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Abstract

Network Functions (NFs) now process a significant fraction
of Internet traffic. Software-based NF Virtualization (NFV)
promised to enable rapid development of new NFs by ven-
dors and leverage the power and economics of commod-
ity computing infrastructure for NF deployment. To date,
no cloud NFV systems achieve NF chaining, isolation, SLO-
adherence, and scaling together with existing cloud com-
puting infrastructure and abstractions, all while achieving
generality, speed, and ease of deployment. These properties
are taken for granted in other cloud contexts but unavailable
for NF processing.
We present Quadrant, an efficient and secure cloud-

deployable NFV system, and show that Quadrant’s approach
of adapting existing cloud infrastructure to support packet
processing can achieve NF chaining, isolation, generality,
and performance in NFV. Quadrant reuses common cloud
infrastructure such as Kubernetes, serverless, the Linux
kernel, NIC hardware, and switches. It enables easy NFV
deployment while delivering up to double the performance
per core compared to the state of the art.
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1 Introduction

Network Function Virtualization (NFV) enables both simple
(e.g., VLAN tunneling) and complex (e.g., traffic inference)
packet processing using software-based Network Functions
(NFs). Over the last decade, much research has explored the
design of NFV platforms or components thereof (e.g., [14,
37, 40, 44, 49, 55, 56] among others). Despite this, we know
of no widely deployed NFV platforms that have achieved
the original goal of NFV: making hardware middleboxes
“someone else’s problem” [48]. Instead, industry has doubled
down on custom hardware solutions [38] and complex and
bespoke NFV frameworks [33].

We posit that NFV can achieve its original goals using an
NFV platform architected as a cloud service. In fact, cloud-
deployability of NFV is fast becoming a necessity, driven
by the move to cloud-hosted 5G cellular function virtual-
ization [30]. A cloud-deployable NFV platform must con-
currently support several functional and performance re-
quirements identified by prior work: (1) chaining multiple,
possibly-stateful third-party NFs to achieve operator objec-
tives [37, 55, 56]; (2) NF-state and traffic isolation between
mutually-untrusted, third-party NFs [40, 44]; (3) near-line-
rate, high-throughput packet processing [14]; and (4) latency
and throughput SLO-adherence [56]. In addition, it must
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Key Property Quadrant NetBricks [40] EdgeOS [44] Metron [14] SNF [49]
Performance High Medium Medium High Low
Isolation ✓ ✓ ✓ ✗ ✓

Stateful-NF Support ✓ ✗ ✗ ✓ ✓

Third-party Compatibility ✓ ✗ ✓ ✗ ✓

SLO-aware Chaining ✓ ✗ ✗ ✗ ✗

Failure Resilience ✓ ✗ ✗ ✗ ✓

Table 1:A comparison of NFV platforms’ properties that are key for being
production-ready.

substantially reuse cloud computing infrastructure and ab-
stractions [49]. To our knowledge, no prior work satisfies all
these objectives (Table 1).
Recent work employs clean-slate custom interfaces, run-

times, and control planes [14, 19, 37, 40, 44], but has not
achieved NF chaining, isolation, and scaling without losing
generality, performance, or ease of deployment. Many ap-
proaches break layering and isolation for performance [14,
19, 37], or leverage specialized hardware [17, 22, 56] at the
cost of poor deployability. To support untrusted third-party
NFs, other solutions either use language-based isolation [40,
42], losing generality, or require expensive per-hop packet
copying [44], sacrificing performance (§3.1). Most relevant is
SNF [49], a recent effort on cloud-based NFV. It sheds signif-
icant insight on distributing traffic among NF instances, but
does not support SLO-aware chaining and ignores optimiza-
tion opportunities available in today’s cloud infrastructure,
such as using hardware and OS kernel features.

In this paper, we describe the design and implementation
of Quadrant, an NFV platform that achieves key functional
and performance requirements (Table 1), while significantly
reusing cloud infrastructure and abstractions. It uses con-
tainers to run NFs, NIC virtualization and software-based
packet steering to balance load among NFs, extends a stan-
dard cluster management system (Kubernetes) to auto-scale
NF processing and ensure failure resilience of NF chains, and
standard OS kernel mechanisms to achieve isolation without
sacrificing performance.
Contributions.We make the following contributions:

High-performance spatiotemporal packet isolation.
Quadrant’s use of containerized NFs, together with NIC
virtualization, ensures that an NF chain can only see its own
traffic. Quadrant also ensures a stronger form of packet
isolation (§4.2): an NF in a chain can access a packet only
after its predecessor NF. Quadrant achieves this by spatially
isolating the first NF from the others in the chain using
a packet copy. Subsequent NFs can process packets in a
zero-copy fashion, with temporal isolation enforced by CPU
scheduling. This approach is general and transparent to NF
implementations, and requires no language support.

Performance-aware scheduling. For performance,
Quadrant dedicates cores to NF chains and uses kernel
bypass to deliver packets to NFs, and uses standard OS inter-
faces to cooperatively schedule NF threads from different NFs

to mimic run-to-completion [14], proven to be essential for
high NFV performance (§4). Run-to-completion processes a
batch of packets; Quadrant selects batch sizes that satisfy
SLOs while minimizing context-switch overhead.

SLO-aware auto-scaling. In response to changes in traf-
fic, Quadrant auto-scales NF chains by dynamically adjust-
ing the number of NF chain instances to minimize CPU core
usage while preserving latency SLOs (§5). This flexibility al-
lows tenants to trade-off latency for lower cost, a capability
present in a few bespoke NFV systems [52, 56].
We find (§6) Quadrant achieves up to 2.31× the per-core

throughput when compared against state-of-the-art NFV
systems [40, 44] that use alternative isolation mechanisms.
Under dynamic traffic loads, Quadrant achieves zero packet
losses and is able to satisfy tail-latency SLOs. Compared
to a highly-optimized NFV system that does not provide
packet isolation and is not designed to satisfy latency SLOs
(but is designed to minimize latency) [14], Quadrant uses
slightly more CPU cores (12–32%) while achieving isolation
and satisfying latency SLOs. Quadrant’s total code base is
less than half the size of existing NFV platforms [14, 40, 49],
and just 3% of an existing open-source Function-as-a-Service
(FaaS) platform [34].

2 Quadrant Overview

Here we sketch Quadrant’s architecture (Figure 1), which
we detail in later sections.
Quadrant Interface. Clients access today’s cloud services
via REST APIs, and front-ends access back-ends via RPC.
Both these abstractions work well for normal web requests
but can be inappropriate and heavyweight for NFs that pro-
cess traffic at the packet level, and can introduce significant
overhead in the form of unnecessary network headers and
additional protocol processing [49]. As a cloud service for
deploying custom NFs, Quadrant needs to have an efficient
programming model that allows developers to easily create
custom NF logic to support packet processing. Quadrant
adopts an event-based programming model widely used for
web services, and adjusts the programming model so that
NFs accept a raw packet struct (a pointer to a packet) as in-
put: they are handler functions for raw-packet events (rather
than web or RPC requests). NFs can have state, and they
share state using a standard distributed key-value store (e.g.,
Redis [46]). They invoke a Quadrant runtime that abstracts
access to packets and state via library APIs (Figure 1(B)).
Indeed, this abstraction is standard for commercial NFs that
attach to virtual Ethernet devices. A Quadrant customer (e.g.,
an organization or an ISP) can then assemble an NF chain of
such NFs along with (a) a traffic filter specification for what
traffic is to be processed by the chain and (b) a per-packet
latency SLO.
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Figure 1: Quadrant’s controller interacts with Quadrant’s ingress and
worker subsystem to deploy containerized NFs for packet processing. Un-
shaded boxes are existing cloud components that Quadrant reuses, lightly
shaded ones are components that Quadrant modifies, and darker ones
represent new components specific to Quadrant embedded within the
infrastructure.

Quadrant Design. Quadrant’s architecture reuses existing
cloud infrastructure (Figure 1(A)). It assumes commodity
servers and OpenFlow-enabled switches, and reuses cloud-
native worker subsystems (e.g., Kubernetes) that manage a
pool of worker servers and allocate system resources (NIC,
CPU core and memory) to NFs. Each worker executes NFs
encapsulated in containers 1; in Quadrant, each container
hosts an NF.2 For custom NFs, customers provide container
images for each NF: they compile and containerize each NF
together with the NF runtime. For third-party NFs, Quad-
rant’s runtime offers a virtual Ethernet interface (a.k.a. veth)
that is an API wrapper for exchanging packets, which is a

1Containers and VMs are common isolation mechanisms for applications.
We adopt NF containers because they are 1.5-2.3× faster than NF VMs [40].
2This also includes cases where NFs can be concatenated into a single NF
with tools such as OpenBox [3] or SNF [16].

standard interface for NFs in production environments. NF
images are ready for deployment once uploaded to Quadrant.
For each worker pool, Quadrant requires two new com-

ponents: a Quadrant controller and the Quadrant ingress. At
eachworker, Quadrant adds a scheduler and aQuadrant agent.
The controller manages the deployment of NF instances by
interacting with the worker subsystem to deploy Quadrant
components (an ingress, per-worker scheduler, and agents)
prior to startup. At runtime, the Quadrant controller uses
the worker subsystem to deploy NFs as containers. It collects
NF performance statistics from each Quadrant agent, serves
queries from the ingress, or pushes load balancing decisions
to the ingress which then enforces them by modifying a flow
table.
Traffic enters and leaves the system at the ingress which

forwards traffic using flow entries that enforce the Quadrant
controller’s workload assignment strategies. A flow entry
forwards traffic to a deployed NF chain instance.When a new
flow arrives, the ingress queries the Quadrant controller (or
uses prefetched queries) to instantiate a new flow entry and
routes subsequent packets in the flow to the corresponding
NF chain instance.

By design, this architecture is similar to that of Function-
as-a-Service (FaaS), because NF chains resemble cloud
functions: they are event-based and require scalability, but
also have significantly different functional and performance
needs. Indeed, our Quadrant implementation is built upon
an open-source FaaS platform, OpenFaaS [34], that can
be easily deployed in commodity clouds. Quadrant reuses
its components (§6). However, it incorporates four novel
features designed to address NFV requirements (§1): a novel
execution model (§3) that permits high throughput packet
processing, a core allocation and scheduling strategy (§4) that
minimizes latency and overhead, a packet isolation strategy
that permits third-party NFs to run fast and securely (§4.2),
and an auto-scaling technique that minimizes CPU core
usage while being able to meet latency SLOs (§5). We
describe these next.

3 Quadrant’s Execution Model

An execution model describes how an application is exe-
cuted, what memory it can access, and how it accesses the
NIC resource. It is critical for achieving key functional and
performance requirements of NFV described in Table 1.
NFs can be seen as network applications that operate on

network packets and internal state. Quadrant users write
packet processing functions, and use runtime APIs to access
packets and state. NFs run as processes with isolated mem-
ory for NF states. Packet memory is carefully managed by
Quadrant to enable memory sharing, avoiding unnecessary
packet copying. Each NF can have many instances that run
as processes across multiple cores, each with a data-plane
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thread managed by Quadrant’s scheduler. We argue that
this design is critical for achieving both performance and
isolation. To provision NFs, Quadrant acts as a cluster sys-
tem manager to allocate resources, e.g., CPU cores, memory,
and network interfaces, to NFs. Quadrant tracks the liveness
and performanace for each chain with per-worker Quadrant
agents. To scale NFs, Quadrant adjusts the number of in-
stances allocated for each chain with the goal of minimizing
CPU core usage while meeting SLOs.
In this section, we describe Quadrant’s NF execution

model and how it differs qualitatively from prior work.

3.1 Existing NF Execution Models

Prior work has explored different NF execution models that
dictate how NFs share packet memory, how the runtimes
steer packets to NFs, and how they schedule NF execution.
Memory model. Prior work has explored three different
models for NFs running on the same worker machine: they
(1) may share NF state memory, and packet buffer memory
(e.g., in Metron [14] and NetBricks [40]), (2) do not share NF
state memory, but share packet buffer memory globally (e.g.,
in E2 [37] and NFVnice [19]), or (3) do not share either NF
state memory or packet buffer memory (e.g., in EdgeOS [44]).
Network I/O model. Packets must be sent to a specific NF
running on a specific server core. In many NFV platforms,
such as E2 [37], NFVnice [19], and EdgeOS [44], a hardware
switch forwards packets to specific worker machines. Once
packets arrive at the server’s NIC, a virtual switch forwards
traffic locally. In amulti-tenant environment, the vSwitch has
read and write access to each individual NF’s memory space,
and copies packets when forwarding them from an upstream
NF to its downstream. The vSwitch can become a bottleneck
for both intra- and inter-machine traffic. To scale it up, a
runtime can add CPU cores for vSwitches, but is a waste of
otherwise productive cores. On our test machine, a CPU core
can achieve a 6.9 Gbps throughput when forwarding 64-byte
packets (or 13.5 Mpps). Consider a chain with 4 NFs running
on a server with a 10 Gbps NIC. The aggregate traffic volume
can reach 40 Gbps at peak on the vSwitch, which requires
at least 7 CPU cores to run vSwitches (more if traffic is not
evenly distributed across the vSwitches).
An alternative approach is to offload packet switching

to the ToR switch and the NIC’s internal switch. Both
switches coordinate to ensure packets arrive at the target
machine’s/target process’s memory. When a packet hits the
ToR, the switch not only forwards the packet to a dedicated
machine, but also facilitates intra-machine forwarding via L2
tagging. This approach eliminates the need to run a vSwitch.
However, it can only ensure that packets are received by
the first NF in a chain. Metron [14] and NetBricks [40] take
this approach, but rely on a strong assumption: that all

NFs can be compiled and run in a single process. However,
many popular NFs are commercially available only as
containers or VMs and cannot be compiled with other NFs
to form a single binary that runs the NF chain. Even if that
were possible, the packet isolation requirement constrains
flexibility significantly, since it can only then be achieved
using language-based memory isolation (e.g., by using
Rust [40, 42]).
CPU scheduling model.Memory and network I/O models
also impact CPU resource allocation and scheduling of NFs
and NF chains. When NF chains run in a single process (as in
Metron and NetBricks), those runtimes can dedicate a core
to an entire chain. When NFs run in separate processes (as
in E2 or NFVnice), runtimes must decide whether to allocate
one or more cores to a chain, and how to schedule each NF.

3.2 NF Chain Execution Model

To ensure minimal changes to existing cloud infrastructures,
Quadrant chooses an execution model that sits in a different
point in the design space: it deploys each NF in a chain
as a container. NFs can share packet buffers (as in Metron
or NetBricks), but packet isolation is enforced through OS
protection, careful scheduling, and packet copying (unlike
NetBricks, which relies on language-specific isolation). Quad-
rant uses NIC I/O virtualization and kernel bypass to reduce
packet steering overhead. The rest of this subsection de-
scribes some of the details of Quadrant’s packet I/O and
memory models. The next section describes CPU allocation
and scheduling.
Packet I/O. Quadrant uses DPDK for fast userspace net-
working to handle packet I/O for NFs. Because other cloud
services may use the kernel networking stack and run on the
same worker, Quadrant must use userspace networking for
NFs while being compatible for kernel networking options.
To do so, it uses Single-root Input/Output Virtualization [21]
(SR-IOV) to virtualize the NIC hardware. SR-IOV allows a
PCIe device to appear as many physical devices (vNICs).
With SR-IOV, NIC hardware generates one Physical Func-
tion (PF) that controls the physical device, and many Virtual
Functions (VFs) that are lightweight PCIe functions with the
necessary hardware access for receiving and transmitting
data.3 On a worker, the Quadrant agent (Figure 1) manages
the virtualized devices via kernel APIs through the PF.
Flow to Chain Mapping. Quadrant maps flows to NF
chains at its ingress (§5.2). Before the Quadrant controller
allocates a CPU core to a chain, the Quadrant agent sets up

3Using multi-queue NICs may lead to performance isolation issues that have
solutions proposed by recent research to improve fairness and performance
[11, 50]. In Quadrant, NICs do not involve complex packet scheduling.
Instead, they just dispatch packets based on L2 headers, so simply applying
a bandwidth limit to VFs is sufficient to avoid this issue.
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a VF to the chain and pins the chain to its allocated core
(§4).4 Later, the hardware switch, when matching a flow,
rewrites the MAC address of the packet to be the one from
the corresponding VF’s MAC address. This approach enables
outsourcing flow dispatching and provides a flow-level
granularity.
Memory. In Quadrant, a runtime on behalf of an NF chain
initializes a file-backed dedicated memory region that holds
fixed-size packet structures for incoming packets. It also cre-
ates a ring buffer that holds packet descriptors that point
to these packet structures. To receive packets from the vir-
tualized NIC, the NF runtime passes this ring buffer to its
associated VF so that the NIC hardware can perform DMA
directly to the NF runtime’s memory.
NF State Management. Stateful NF (e.g., IDS) packet pro-
cessing depends on both the packet itself and theNF’s current
state. Prior work (e.g., statelessNF [13], S6 [55], SNF [49])
has demonstrated that it is feasible to efficiently decouple NF
processing from state, because most stateful NFs only have
to access remote state 1–5 times per connection/flow [13].

In Quadrant, we leverage this observation to maintain per-
NF global state remotely in Redis, while providing efficient
caching tomitigate the latency overhead of pulling state from
the external store. Quadrant’s programming model exposes
a set of simple APIs for writing a stateful NF: update(flow,
val) and read(flow, val), where flow corresponds to
a BPF matching rule. Besides global NF state, Quadrant’s NF
runtime maintains general NF state in a hash table locally
so that the user-defined NF can process most packets with
state present in its local memory. The runtime makes the
state synchronization transparent to the NF by interacting
with the external Redis service, and ensures that each NF
can only access its own state. It processes packets in batches
(§4), and for each packet batch, the runtime batches all state
accesses required by all packets prior to processing. It pulls
state from Redis with a batched read request to amortize the
per-packet state access delay.
Once an NF calls update, its runtime issues a request

to the local Quadrant agent to update global state in the
Redis service and the packet triggering the state update. The
agent releases the packet once the global state has been
updated. This is necessary to keep NF state consistent: the
packet won’t reach its destination unless the NF’s global
state has been updated. This design also avoids doing state
synchronization operations in the data plane, and minimizes
Quadrant’s state synchronization’s impacts on the overall
end-to-end latency.

4Mellanox ConnectX-5 100 GbE NICs and Intel XL710 40 GbE NICs support
up to 128 VFs, while Intel E810 100 GbE NICs can support up to 256 VFs.
With a large number of VFs, Quadrant can saturate all cores on modern
platforms, even for a hundred cores.

In Quadrant, each NF is associated with a unique hash
key, which is used to tag NF states in the Redis service. This
is useful to recover the state of a single NF instance when
migrating flows from it or recovering from failure (§4.3).

Quadrant’s state consistency mechanism builds on Redis’s
consistency guarantee. In Redis, acknowledged writes are
committed and never lost and reads return the most-recent
committed write [46]. In Quadrant, an NF emits a packet
only after receiving a state update acknowledgement, and
starts processing a migrated flow only after emitting packets
from the original core. When an NF update per-flow state
(see also §7), this ensures state consistency. This can add
some delay, but our experiments demonstrate that, despite
this, Quadrant can achieve its performance goals.

4 Core Allocation and Scheduling

In Quadrant, each NF is deployed as an individual container
in a Kubernetes cluster. Quadrant dedicates a core to all NFs
in a chain; that core serves a traffic aggregate assigned to
that chain. When the total traffic exceeds the capacity of a
single core, Quadrant spins up another chain instance on
another core, and splits incoming traffic between NF chain
instances (§5). The Quadrant controller manages all NFs via
Kubernetes APIs to control the allocation of memory, CPU
share, and disk space.

4.1 Controlling Chain Execution

Userspace I/O and shared memory can reduce overhead, but
to be able to process packets at high throughput and low
latency, Quadrant must have tight control over NF chain
execution. As discussed earlier, custom NF platforms use
two different approaches. One approach bundles NFs in an
NF chain into a single process to run to completion in which
each NF in the chain processes a batch of packets before
moving onto the next batch (as in Metron or NetBricks).
This approach ensures high performance and predictabil-
ity by amortizing overhead over a packet batch. To achieve
packet isolation, NetBricks relies on language isolation, so
cannot support third-party NFs. The second approach, used
by NFVnice and others, is to run each NF in a separate pro-
cess and use vSwitches for packet forwarding, which ensures
isolation but incurs high overhead by copying packets, re-
quiring careful CPU allocation and scheduling (e.g., tuning
CFS and using ECN for backpressure in NFVnice).

Instead, Quadrant aims for the best of both worlds: it does
not force developers to write and release NF code in a spe-
cific programming language; it also avoids overheads and
complexity brought by approaches that use vSwitches. Quad-
rant introduces spatiotemporal packet isolation in which NF
chains operate on 1) spatially-isolated packet memory re-
gions (as opposed to the typical model in run-to-completion
software switches such as BESS, in which all NF chains on a
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machine run in the same memory) and 2) are temporally iso-
lated through careful sequencing of their execution, which
proceeds in a run-to-completion fashion across processes and
uses cooperative scheduling mechanisms to hand off control
at the natural execution boundary of packet batch handoff
(§4.2). This isolation ensures that NF chains (which may
process different customers’ traffic) cannot see each others’
packet streams or state, and even within a chain each NF
maintains private state and only gets to execute (and thus ac-
cess packet memory) when it is expected to perform packet
processing in the chain.
Enforcing run-to-completion scheduling. Quadrant
uses a per-core NF Cooperative Scheduler. All NF containers
in a chain are assigned to a single core; each runs two
processes. The NF process is single threaded and processes
traffic. The NF runtime process has an RPC server to control
the NF and a monitoring thread to collect statistics (§5). To
avoid interfering with packet processing, the monitoring
thread runs on a separate core. The runtime is invisible to
NF authors.

To tightly coordinate NF chain execution, Quadrant uses
Linux’s real-time (RT) scheduling support, and manages NF
threads’ real-time priorities and schedules them using a FIFO
policy. We use this policy to emulate, as described below, NF
chain run-to-completion execution in which each NF in the
chain processes a batch of packets in sequence.
Scheduling model. In Quadrant’s cooperative scheduling,
an upstream NF runs in a loop to process individual packets
of a given batch, and then yields the core to its downstream
NF. This is transparent to the NFs: once the user-defined NF
finishes processing, the NF runtime determines whether to
transmit the packet batch to the downstream NF; if yes, the
runtime invokes yield.5

For this, the Cooperative Scheduler has to bypass the un-
derlying scheduler (CFS in our implementation) and take
full control of a core. Internally, the scheduler maintains two
FIFO queues: a run queue that contains runnable NFs, and a
wait queue that contains all idle NFs. It offers a set of APIs
that the NF runtime can use to transfer the ownership of NF
processes of a chain from CFS to the Cooperative Scheduler.
These APIs are used by the Quadrant agent, which runs as a
privileged process. NFs themselves cannot access these APIs,
so cannot change scheduling priorities or core affinity.
Once a chain is deployed, all NFs are managed by the

Cooperative Scheduler, and are placed in the scheduler’s
wait queue as detached. Once an NF chain switches into
the attached state (see below), the Cooperative Scheduler
pushes NFs of this chain into its run queue and ensures that
the original NF dependencies are preserved in the run queue.

5To deal with non-responsive NFs, the runtime terminates chain execution
if an NF fails to yield after a conservative timeout.

To detach a chain, the Cooperative Scheduler waits for the
chain to finish processing a batch of packets, if any, and then
moves these NF processes back to the wait queue.
How scheduling works. Once an NF starts, Quadrant’s NF
runtime reports its thread ID (tid) to the Quadrant agent run-
ning on the same worker. Once all NFs are ready, the Quad-
rant agent registers their tids as a scheduling group (called a
sgroup) to the Cooperative Scheduler. Thereafter, the cooper-
ative scheduler takes full control of NFs. An NF chain starts
in the detached state. When the Quadrant controller assigns
flows to the chain (§5), the Cooperative Scheduler attaches
the chain to the core. When the monitoring thread sees no
traffic has arrived for the chain, the scheduler detaches the
chain, so the Quadrant controller can re-assign the core.

For attach and detach operations, and to schedule NF chain
execution, the Cooperative Scheduler has a master thread
to serve scheduling requests and runs one enforcer thread
on each managed core. The scheduler uses features of Linux
FIFO thread scheduling: 1) high-priority threads preempt
low-priority threads and 2) a thread is executed once it is at
the head of the run queue, and is moved to the tail after it
finishes. An enforcer thread is raised to the highest priority
when enforcing scheduling decisions. When an NF chain
is instantiated on a core, the enforcer thread registers the
corresponding NF processes as low-priority FIFO threads so
that they are appended to the wait queue. When attaching
the NF chain, it moves NF processes to the run queue by
assigning them a higher priority, and vice versa when de-
taching a sgroup. Operations are done in the sequence that
NFs are positioned in the NF chain, so when an NF yields,
the CPU scheduler automatically schedules the next NF in
the chain.

In this model, each worker machine splits CPU cores into
two groups. One group is managed by the Cooperative Sched-
uler, while the other runs with normal threads managed by
CFS. We use a standard kernel and support different sched-
ulers on different cores. This enables running NF and non-
NF workloads on the same machine. Recent research [8, 35]
shows that this is critical for achieving high CPU core effi-
ciency for latency-sensitive applications.
Estimatingminimum batch size. The Cooperative Sched-
uler introduces 𝑁 context switches for a chain with 𝑁 NFs.
Without packet batching, a coremay incur significant context
switch overhead. Quadrant estimates the minimum batch
size required to bound the context switch overhead within a
fraction 𝑝 (which is configurable).
Let 𝑟 is the packet rate when running the NF chain in a

single thread, the maximum achievable rate. Then if 𝐹 is the
processor clock frequency, and 𝑆𝑖 is the cycle count of the
𝑖-th NF in a chain needed to process a packet, 𝑟 = 𝐹∑𝑁

𝑖=1 𝑆𝑖
.
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Figure 2: Timeline of packets on a Quadrant worker. A packet is tagged
at the ingress. 1) NIC’s L2 switch sends it to NIC VF associated with the
destined chain. NIC VF DMAs packets to the first NF’s memory space. 2) NF
1 processes the packet. 3) After NF 1’s packet processing function returns,
the packet is copied to the chain’s pktbuf by the NF runtime if there are
other NFs. This is necessary to ensure packet isolation as the NIC’s pktbuf
should only been seen by NF 1. 3)–5) A per-core cooperative scheduler
controls the execution sequence of NFs to ensure temporal packet isolation.
6) Final NF asks VF to send the packet out.

The actual packet rate is given by:

𝑟 =
𝐹∑𝑁

𝑖=1 𝑆𝑖 +
𝑁 ·𝐶𝑐𝑡𝑥

𝐵

(1)

where 𝐶𝑐𝑡𝑥 is the context switch cost, 𝐵 is the batch size.
To bound the overhead to a fraction 𝑝 , we simply solve

for the smallest 𝐵 that satisfies the inequality 𝑟/𝑟 ≤ (1 + 𝑝).

4.2 Spatiotemporal Packet Isolation

What is packet isolation? Quadrant targets support for
third-party NFs (e.g., a Palo Alto Networks firewall [39]) in
multi-tenant settings where each chain may consist of NFs
from multiple vendors, and each chain may be responsible
for processing a specific customer’s traffic. For this, Quadrant
must ensure (1) memory isolation: each NFmust have its own
privatememory formaintaining NF state; (2) packet isolation:
within an NF-chain, an NF should not be able to access a
packet until its predecessor NF has finished processing the
packet, and across chains, an NF should not be able to access
packets not destined to its own chain.
Achieving Isolation in Quadrant. Since each NF is en-
capsulated in a container, memory isolation for NF state is
trivially ensured. Quadrant uses shared memory to effect
zero-copy packet transfers. Figure 2 describes how Quadrant
achieves packet isolation while permitting (near) zero-copy
transfers. The key idea is to use shared packet memory for
NFs to avoid packet copying whenever possible, and control
the access to the shared memory via cooperative scheduling
to provide lightweight isolation.
Quadrant allocates each NF chain a separate virtual NIC

with SR-IOV, each initialized with a separate ring buffer
queue that holds packets for the chain. Upon packet arrival,
the NIC hardware directly DMAs packets to this queue. Ide-
ally, NFs within the chain access the queue directly in the
shared memory region, avoiding copying. However, this can

violate packet isolation because a downstream NF could ac-
cess shared memory while the NIC hardware writes to it.
To avoid this, Quadrant gives only the first NF in the

chain access to the NIC packet queue, and also allocates a
second packet queue for each NF chain. This second queue
holds packets for downstream NFs in the chain, and is shared
among those NFs. Thus, the first NF can access the NIC
packet queue and is spatially isolated from other chains and
from downstream NFs. It processes each batch of packets
and copies it to the second packet queue.

Quadrant then temporally isolates the second packet queue
across all downstream NFs through cooperative scheduling.
Cooperative scheduling ensures NFs run in the order they
appear in the chain, so even though it has access to shared
memory, a downstream NF cannot access a batch that has
not been processed by an upstream NF since it will not be
scheduled. This permits zero-copy packet transfer between
all NFs except the first.

For a chain with only one NF, Quadrant omits the unneces-
sary packet copying and cooperative scheduling. The Quad-
rant NF runtime also applies an optimization that prefetches
packet headers into the L1 cache before calling the user-
defined NF for processing. This optimization can improve
performance (§6.2).
Finally, Quadrant allocates each chain its own packet

queues, and does not share queues across chains. This en-
sures spatial packet isolation across different chains.

4.3 Other Details

Mitigating startup cost. Auto-scaling may need to allo-
cate a new worker to an NF chain. Cold-starts can incur
significant delay, especially since Quadrant uses user-space
networking libraries that can incur 500 ms or more to set
up memory buffers. This delay can result in SLO violations.
Like prior work [29, 32] on reducing serverless startup time,
Quadrant keeps a pool of pre-deployed NF chains that start
in the detached state and do not consume CPU resources.
Failure resilience.Quadrant is resilient to NF failures. Each
NF monitor tracks liveness of each NF in a chain by track-
ing the progress of per-NF packet counters. Other Quadrant
components like the controller, the agents, and the ingress
are instantiated by Kubernetes, which manages their recov-
ery. Once it detects a failed NF, the controller must migrate
flows assigned to it to another worker. This is conceptually
identical to the flow migration (§5.3) discussed above.

5 Auto-scaling in Quadrant

Quadrant auto-scales (adapts resources allocated to) NF
chains in response traffic volume changes. Quadrant uses an
architecture (Figure 1) similar to other cloud services [34, 54]:
its controller coordinates with the global ingress and worker
machines for auto-scaling. The ingress forwards requests
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to idle worker instances. The controller manages the pool
of instances to handle dynamic traffic while achieving cost
efficiency. The controller is aided by a per-worker Quadrant
agent that monitors NF performance and works with the
cooperative scheduler to enforce scheduling policies.

5.1 Monitoring and scaling signals

The NF monitor. Monitoring is critical for scaling NF
chains. At each NF, the NF monitor collects performance
statistics, including NIC queue length, the instantaneous
packet rate, and the per-batch execution time. The packet
rate is measured as the average processing rate of the whole
NF chain and NIC queue length is as reported by the NIC
hardware. It also estimates per-batch execution time by
recording the global CPU cycle counter at the beginning
and the end of sampled executions. A chain’s latency SLO is
the upper-bound for the tail (defined as the 99th percentile)
end-to-end latency.6
To avoid interfering with data-plane processing, the NF

monitor runs in a separate thread and is not scheduled on
a core running NFs. Each NF monitor maintains statistics
and sends updates to the Quadrant controller only when
significant events occur (to minimize control overhead), such
as when queue lengths or packet rates exceed a threshold.
Signals used by auto-scaling algorithms. Quadrant’s
scaling algorithm estimates end-to-end tail latency and
the packet load (defined below) to determine when to
scale up or down. To estimate the end-to-end tail latency,
Quadrant estimates the p99th duration that a packet spends
on a worker (the worker latency), and the p99th network
transmission latency. It estimates the worker latency as
2× the p99 per-batch execution time acquired from the
monitoring service, as a packet may have to wait for the
previous and current batch.We use a function of the link’s
throughput for the network transmission delay and use
offline profiling to map a worker’s throughput to the p99
network transmission latency.

Our end-to-end latency estimation is conservative because
1) the worker latency is the worst-case latency and 2) the
p99th end-to-end latency is less than or equal to the sum of
the p99th worker latency and network transmission latency.
Quadrant also measures the packet load as the ratio between
the current packet rate and the maximum packet rate.7

6End-to-end packet latency measures the time a packet spends in Quadrant,
including both packet processing and network transmission.
7Queuing theory notes that the delay can skyrocket as the arrival rate nears
the service rate. Quadrant avoids scheduling a chain close to its maximum
rate because a small rate increase can significantly increase the latency; it
stops assigning more flows to a chain above a given load (e.g., 90%).

5.2 Quadrant Ingress

Quadrant’s ingress implements its controller’s load balancing
decisions. It adapts existing load-balancers to ensure flow-
consistent forwarding decisions. To do this, it pre-fetches
from the controller a list of (worker, core) pairs, and their
associated load, to assign to new flows. When a new flow
arrives, it assigns it to a worker based on the associated load
and installs a flow entry. These actions can be implemented
either in hardware or software (we have implemented both).

5.3 Scaling of NF Chains

Quadrant tries to schedule chains on the fewest CPU cores
that can serve traffic while meeting SLOs. It does so by (a)
carefully managing flow-to-worker mappings, and (b) moni-
toring SLOs and migrating flows to avoid SLO violations.
Managing flow-to-workermappings. The Quadrant con-
troller uses the per-chain end-to-end latency (§5.1) estima-
tion as the primary scaling signal to balance loads among
workers to avoid SLO violations. It uses a hysteresis-based
approach to control the end-to-end latency under a given la-
tency SLO, while maximizing core utilization. Suppose𝑇𝑠𝑙𝑜 is
the target chain’s SLO. Quadrant uses two thresholds: a lower
threshold 𝛼𝑇𝑠𝑙𝑜 ; the upper threshold is 𝛽𝑇𝑠𝑙𝑜 (0 < 𝛼 < 𝛽 < 1).
The Quadrant controller only assigns new flows to chains
whose estimated end-to-end latency is less than the lower
threshold. Of these, it selects the chain with the highest
packet load (§5.1), thereby ensuring that Quadrant uses the
fewest cores. Finally, it stops assigning new flows to a chain
whose estimated p99 latency is between the two thresholds.
Migrating flows to meet SLOs. Due to traffic dynamics, a
chain’s estimated end-to-end latency can exceed the upper
threshold; then, the controller moves flows from this chain
until its end-to-end latency falls below the lower threshold.

Migrating flows reduces the queuing delay. According to
Little’s law [27], the average packet queuing delay is 𝑑 =
1/(𝑟𝑚𝑎𝑥−𝑟 ), where 𝑟𝑚𝑎𝑥 is the maximum packet rate that a
chain runs on a core, and 𝑟 is the chain’s current packet rate.
To compute the slope of the queuing delay curve:

𝛿𝑑

𝛿𝑟
=

1
(𝑟𝑚𝑎𝑥 − 𝑟 )2 (2)

Translate (2) into the following form:
𝛿𝑟

𝑟
=
𝛿𝑑

𝑑
( 𝑟𝑚𝑎𝑥

𝑟
− 1) (3)

where 𝛿𝑟/𝑟 is the packet rate change ratio; 𝛿𝑑/𝑑 is the latency
change ratio; the rate-adapting term ( 𝑟𝑚𝑎𝑥

𝑟
−1) indicates that

decreasing packet rate more is necessary for decreasing the
latency by the same ratio when the packet rate 𝑟 is low.

With the above intuition, we decide the sum of packet rates
Δ𝑟 for migrated flows as a function of the chain’s current
packet rate 𝑟𝑐𝑢𝑟𝑟 and its estimated latency 𝑡𝑐𝑢𝑟𝑟 . Note that,
𝑡𝑐𝑢𝑟𝑟 > 𝛽𝑇𝑠𝑙𝑜 , where 𝑇𝑠𝑙𝑜 is the latency SLO and 𝛽𝑇𝑠𝑙𝑜 is
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the upper latency threshold (§5.3). Quadrant uses the lower
threshold 𝛼𝑇𝑠𝑙𝑜 as the target latency for the migration, and
calculates the sum of migrated flows’ packet rates as8:

Δ𝑟 = 𝑟𝑐𝑢𝑟𝑟
𝑡𝑐𝑢𝑟𝑟 − 𝛼𝑇𝑠𝑙𝑜

𝑡𝑐𝑢𝑟𝑟
( 𝑟𝑚𝑎𝑥

𝑟𝑐𝑢𝑟𝑟
− 1) (4)

Alternatively, Quadrant can migrate flows so that the aggre-
gated packet rate is proportional to the latency change ratio
w/o the rate-adjusting term. We evaluate these in Appendix.

Quadrant’s runtime manages migration of stateful NFs to
a new worker. The runtime on the old worker synchronizes
state with Redis before emitting packets in a batch. When
a flow migrates to another worker, that worker’s runtime
fetches related state from Redis before processing packets.
Reclaiming idle cores. Finally, when anNF thread becomes
idle (all flows previously assigned to it have completed),
Quadrant reclaims the assigned core. Quadrant could have,
instead, migrated flows away from underutilized NF chains,
but this would have complicated state management for state-
ful NFs. We have left this optimization to future work.
Listing 1 in Appendix shows the ingress algorithm to as-

sign flows to NF chain instances, and the algorithm used at
workers’ cooperative schedulers to dynamically attach and
detach cores to/from chains in response to traffic dynamics.

6 Evaluation

Next we substantiate claims listed in Table 1: Quadrant en-
sures high performance and meets SLOs, provides NF isola-
tion, supports stateful NFs, and is robust to NF failure, while
reusing existing cloud components.
Implementation. Quadrant is built upon OpenFaaS [34],
an open-source FaaS platform for hosting serverless func-
tions. OpenFaaS consists of infrastructure and application
layers, and uses Kubernetes, Docker, and the Container Reg-
istry. Quadrant reuses these APIs to manage and deploy
NFs. OpenFaaS uses its gateway to trigger functions, and
Quadrant adds an ingress. Incoming traffic is split at the
system gateway; normal application requests are forwarded
to OpenFaaS’s gateway, while NFV traffic is forwarded to
the Quadrant ingress. OpenFaaS uses a function runtime
that maintains a tunnel to the FaaS gateway, and hands off
requests to user-defined functions; instead, Quadrant uses
the above mechanisms to receive traffic from its ingress (§5).
Quadrant reuses OpenFaaS’s general framework and relies
on a per-worker agent for NF performance monitoring and

8Due to measurement errors, 𝑟𝑐𝑢𝑟𝑟 samples (calculated by using the chain’s
packet counter) may be higher than 𝑟𝑚𝑎𝑥 (calculated by using the amortized
per-packet cycle cost). To avoid a negative value, we apply a hard lower
bound 0.25 for the rate-adapting term, when 𝑟𝑐𝑢𝑟𝑟 ≥ 0.8𝑟𝑚𝑎𝑥 .

its cooperative scheduler for enforcing scheduling policies.
We quantify Quadrant’s additions in §6.1.
Experiment setup. We use Cloudlab [5] and run experi-
ments on a cluster of 10 servers, and configure both DPDK
and SR-IOV. Each server has dual-CPU 16-core 2.4 GHz Intel
Xeon E5-2630 (Haswell) CPUs with 128 GB memory (DDR4
1866 MHz). To reduce jitter, we disable hyperthreading and
CPU frequency scaling. Each server has one dual-port 10 GbE
Intel X520-DA2 NIC. Both are connected to an experimental
LAN for data-plane traffic. Each machine has one 1 GbE Intel
NIC for control and management traffic. Servers connect to a
Cisco C3172PQs ToR switch with 48 10 GbE9 ports and Open-
flow v1.3 support. The traffic generator and the Quadrant
ingress run on dedicated machines.
Methodology and Metrics. Our experiments use end-to-
end traffic with 3 canonical chains from light to heavy
CPU cycle cost, from documented use cases [20]. Chain 1
is a L2/L3 tunneling pipeline: Tunnel→IPForward; Chain
2 is an expensive chain with DPI and encryption NFs:
ACL→UrlFilter→Encrypt; Chain 3 is a state-heavy chain
that requires connection consistency: ACL→NAT. Tunnel
parses a packet’s header, determines its VLAN TCI value
and appends a VLAN tag to the packet. ACL enforces 1500
access control rules. UrlFilter performs TCP reconstruction
over flows, and applies complex string matching rules
(e.g., Snort [45] rules) to block connections mentioning
banned URLs. Encrypt encrypts each packet payload with
128-bit ChaCha. NAT maintains a list of available L4
ports and performs address translation for connections,
assigning a free port and maintaining this port mapping for
a connection’s lifetime.

Key performance metrics include: end-to-end latency dis-
tribution and packet loss rate and time-average and max
CPU core usage for the test duration. The traffic generator
uses BESS [2] to generate flows with synthetic test traffic.

6.1 Quantifying Reuse of Abstractions

Quadrant’s deployability stems from its reuse of existing
cloud frameworks and its limited new code. Quadrant adds
code in three categories. The first is code for NFV at the
(edge) cloud (independent of Quadrant), 4150 LOC, includ-
ing for packet processing, monitoring, isolation, SLO scaling,
and core reclaiming. The second category contains 1210 LOC
to support Quadrant’s specific mechanisms, including isola-
tion with shared memory and SLO-adherent chaining. The
third category is 4200 LOC to leverage standard APIs, includ-
ing run-to-completion scheduling, supporting statefulness

9We also conducted one experiment (§6.6) using 40/100 GbE NICs on our
own testbed. (Our experiments use servers w/ Inter CPUs and an OpenFlow-
enabled network. Cloudlab does not support these for 40/100 GbE.)
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and packet processing interfaces, and cooperative schedul-
ing. The rest is for CLI and debugging tools, which are nice
to have but not necessary. By comparison, OpenFaaS [34]
is 345k, OpenLambda [12] is 217k, NetBricks [40] is 31k,
Metron [15] is 30k for its control plane, and SNF [49] is 20k.
In summary, Quadrant adds a small fraction to existing

FaaS systems (2.7% of OpenFaaS). Further, Quadrant uses far
fewer lines of code versus custom NFV systems because it
reuses existing abstractions judiciously, and only requires
about 1k lines of custom code (the second category above).

6.2 Performance Comparisons: Isolation

We compare Quadrant against other NFV systems that make
different isolation choices. For this experiment, we use chains
of many instances of a canonical Berkeley Packet Filter
(BPF) [26, 53] NF that parses packet headers and performs
200 longest-prefix matches on packet 5-tuples.10 Our evalua-
tions vary NF chain lengths as in prior work [14, 23].
Isolation via copying. EdgeOS [44] supports isolation via
data copying. We emulate EdgeOS on top of a reimplemen-
tation of NFVnice [19] with the same set of mechanisms
for packet copying, scheduling notifications, and cache-line
optimizations. We use NFVnice’s master module to move
packets between NF processes. The master module runs as
a multi-threaded process with one RX thread for receiving
packets from the NIC, one TX thread for transmitting pack-
ets among NFs, and one wake-up thread for notifying a NF
that a message has arrived at its message buffer. All three
threads run on dedicated cores to maximize its performance.
Isolation via safe languages. NetBricks [40] uses compile-
time language support from Rust to ensure isolation among
NFs plus a run-time array bounds check. We reuse Net-
Bricks’s open-source implementation.
Results. Figure 3 shows the throughput of different isolation
approaches. Quadrant outperforms NetBricks (1.21-1.51×)
and NFVnice w/ packet copying (1.61-2.31×).
NFVnice with packet copying achieves 62% throughput

relative to Quadrant with a single-NF chain. As chain length
increases its throughput decreases despite its 3 extra CPU
cores for transmitting packets among NFs because: (a) cross-
core packet copy overheads and (b) load imbalance across
NFs since NFVnice tunes scheduling shares for NFs on a
single core using Linux’s cgroup mechanism.
NetBricks suffers from memory access overheads due to

array bounds checks; in our experiments, memory accesses
are incurred during longest prefix matches. These overheads
become significant when packets trigger complex computa-
tions, which explains its drop in performance. To validate this

10Fixing the number of per-packet memory accesses is important for a
reason described later. We have also experimented with different values of
the number of matches, and omit results for brevity.
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Figure 3: Throughput with increasing chain length for running an NF
chain on a single core.

assertion, we ran NetBricks with dummy NFs (that use an
equivalent number of CPU cycles with no per-packet mem-
ory accesses), and found that it can achieve 94-99% of Quad-
rant’s performance. By contrast, Quadrant’s lightweight iso-
lation does not incur per-memory-access overheads, so it
has higher throughput.

To understand the overhead in Quadrant imposed by iso-
lation, we implemented a no-isolation variant labeled Quad-
rant (single thread) that runs all NFs in a single thread. Com-
pared to this unsafe-but-fast variant, Quadrant has an over-
head that remains at the same level regardless of the chain
length: Quadrant achieves a 90.2%-94.2% per-core throughput
when deploying a multi-NF chain while providing isolation.
Thus, Quadrant pays a 6-10% penalty for achieving isolation.
For single-NF chains, we turned off the prefetch-into-L1 op-
timization described in §4.2 in Quadrant’s variant, and found
that Quadrant achieves slightly better performance.

6.3 Performance Comparisons: Scaling

Quadrant scales chains to meet their latency SLOs. We quan-
tify CPU core usage when deploying chains. Here, we com-
pare Quadrant against Metron [14], a high-performance
NFV platform, in the same end-to-end deployment setting.
Metron auto-scales core usage, but does not support SLO-
adherence. E2 [37] and OpenBox [3] also have the same
property, but Metron outperforms them, so we compare only
against Metron. Metron does not provide packet isolation,
so we do not include it in isolation comparisons.
Before each experiment, an NF chain specification

is passed to both systems’ controllers to deploy NFs in
the test cluster. Metron also uses a hardware switch to
dispatch traffic, and has its own CPU scaling mechanism.
Unlike Quadrant, it compiles NFs into a single process, and
runs-to-completion each chain as a thread. Each Metron
runtime is a multi-threaded process that takes all resources
on a worker machine to execute chains with no isolation.

Results. Across all experiments, both systems achieve a
zero loss rate. Thus, we compare two systems by looking at
the tail latency, and the CPU core usage when they serve the
test traffic (100 million packets). Quadrant can meet the tail
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Figure 4: Core usage of NF chains implemented in Quadrant and Metron
as a function of achieved tail latency.

latency SLO for all chains. Metron targets zero loss, not SLO
adherence. Figure 4 plots the CPU core usage as a function of
achieved tail latency by both systems. Metron does not adjust
its CPU core usage for different latency SLOs, while Quadrant
is able to adjust the number of cores used to serve traffic
under different SLOs, to trade off latency and efficiency; it
dedicates more cores for a stringent SLO.
To fairly compare CPU core usage, we select Quadrant’s

samples whose tail latency are smaller but closest to Metron’s
achieved latency, and compare the time-averaged CPU cores
again Metron. For Chain 1, Quadrant achieves 82.7 𝜇s latency
using 3.61 cores on average, about 12% more than Metron
(they both use the same number of max cores), while Metron
achieves 85.4 𝜇s latency. For Chain 2, Quadrant achieves
comparable latency, uses about 23% more cores on average
(14.38 vs. Metron’s 11.66). Results are similar for Chain 3.

Quadrant’s higher core usage results from its support for
isolation, its SLO-adherence (both of whichMetron lack), and
its scaling algorithm (different from Metron’s, §5.3). Quad-
rant incurs multiple context switches in scheduling a chain.
With a tight latency SLO, Quadrant uses smaller batch sizes,
resulting in a higher amortized per-packet overhead; this
is more significant for light chains (e.g., Chain 3). However,
the absolute number of extra cores remains small because
such chains run at high per-core throughput. Quadrant’s
monitoring may notify users if chains have small batch size
due to a stringent SLO; they can relax the latency SLO or
proceed with higher overhead.

To understand the impact of the scaling algorithm by itself,
we port Metron’s scaling algorithm to Quadrant, and imple-
ment a variant, called Quadrant-Metron. Figure 4 shows the
achieved latency and CPU core usage for this variant. Like
Metron, Quadrant-Metron does not adjust CPU core usage
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Figure 5: End-to-end tail latency achieved by NF chains deployed in
Quadrant as a function of latency SLO.

for different latency SLOs; for Chain 1, Quadrant achieves
128.4 𝜇s, but Quadrant-Metron achieves 173.7 𝜇s latency
and uses 16% more cores on average. Similar results hold
for other chains, and validate our decision to design a new
scaling algorithm instead of using Metron’s.

6.4 Validating SLO-adherence with Scaling

Methodology. We evaluate Quadrant’s SLO-adherence in
scaling different chains under traffic dynamics. For each ex-
periment, we run a DPDK-based flow generator to generate
traffic at 10 flows/s with a median packet size of 1024-byte,
which we selected through trace analysis [4]. The traffic gen-
erator gradually increases the number of flows and reaches
the maximum throughput after 60 seconds, with a peak load
of 18 Gbps.11 Then the traffic generator stays steady at the
maximum rate until 100 million packets are sent. All traffic
enters the system through a switch. We evaluate end-to-end
metrics, including the tail latency, and the time-averaged
number of cores for deploying chains.
SLO-adherence for different NF chains. Quadrant scales
chains to meet latency SLOs. Quadrant estimates a chain’s
tail latency, and uses it as a knob to control the end-to-end
delay for packets being processed by the chains. We evaluate
Quadrant’s ability of controlling the end-to-end tail latency
under different SLOs with all test chains.

Results. Figure 5 shows the end-to-end tail (p99) latency
achieved by Quadrant as a function of latency SLOs. For each
chain, Quadrant meets the tail latency SLO for all tested SLOs.
At a higher latency SLO, both the lower latency threshold and
the tail latency are higher. We see the cause of this behaviour:
Quadrant’s controller migrates flows from a chain when its

11This traffic volume is similar to that used by prior work [13].
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Figure 6: End-to-end tail latency achieved under different levels of traffic
dynamics. Latency SLO is 70 𝜇s for all groups.

estimated latency exceeds the upper latency threshold, and
it sets the lower threshold as the latency target (§5.3).
This feature aligns with the trade-off between latency

and efficiency: for a traffic input, achieving a higher tail
latency results in a higher per-core throughput, which means
Quadrant can devote fewer CPU cores to serve traffic. This
feature is important in the cloud context: Quadrant can use
the right level of system resources to meet the latency SLO.
We note that Chain 1 and Chain 2 have tail latency close

to lower latency thresholds. Chain 3 behaves differently: its
tail latency stops increasing after its latency SLO is greater
than 130 𝜇s, because Chain 3 deployments have reached the
per-core packet load limit. As we described in §5, Quadrant
avoids executing chains close to its max per-core packet rate.
For these cases, the per-core rate is high enough so that it is
less beneficial to pursue a higher per-core efficiency at the
cost of making the end-to-end latency unstable.
SLO-adherence under traffic dynamics. It is important
that Quadrant works for different traffic inputs so we verify
Quadrant’s ability to control latency with such inputs. To
do so, we deploy chains with a fixed latency SLO to see
whether Quadrant can control latency with traffic dynamics.
We gradually increase traffic by randomly accelerating a
subset of flows by 30% of their packet rates for half of a flow
duration. We vary the percentage of flows with an increased
packet rate, and measure Quadrant’s latency performance.

Results. We show the tail latency under traffic inputs
with different subsets of flows with an increased packet rate.
(Figure 6) For all these cases, Quadrant is able to meet the tail
end-to-end latency SLO; in fact, all groups achieve similar
latency results regardless of the input.

6.5 Quantifying Isolation Overhead

Spatial isolation overhead. Spatial isolation overhead re-
sults from SR-IOV; we compare running a test NF with and
without SR-IOV enabled. Our test NF is an Empty module
so that it only involves swapping the dst and src Ethernet
addresses of a packet to send it back.

Results. Figure 7 shows running with SR-IOV adds only
0.1 us latency for both 80-byte and 1500-byte packets. We
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Figure 7: End-to-end latency CDF with SR-IOV on and off.
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Figure 8: Per-packet cost of copying packets of different sizes

also find that the maximum throughput achieved by an SR-
IOV enabled NIC ≥ 99.6% of the throughput achieved by a
NIC running in a non-virtualized mode.
Temporal isolation overhead. NFs in a chain hand off
packet ownership. Packet isolation requires that NFs in the
same chain can only acquire packet ownership after its prede-
cessor finishes processing it (§4.2). To quantify this temporal
isolation overhead, we evaluate using a multi-NF chain.

Results. Figure 8 shows the p50 and p99 CPU cycle cost
for copying one packet of different sizes. The median cost
to copy a 100-byte packet is 247 cycles and, for a 1500-byte
packet, 467 cycles. This small difference is due to the cost
of allocating a packet struct. Scheduling NFs cooperatively
involves context switches between NF threads that belong to
different NF processes. We profile the average cost of context
switches between NFs: 2143 cycles per context switch. Note
that this context switch cost is amortized among the batch
of packets in each execution. For a default 32-packet batch,
the amortized cost is only 67 cycles per packet. This cost
is 27 | 14% of the cost for copying a 64 | 1500-byte packet
respectively. Further, it is only 31% of the cost for forwarding
a packet via a vSwitch with packet copying, as in EdgeOS.12

Using munmap/mmap for transferring packet ownership.

For isolation we could have used munmap and mmap to ex-
plicitly manage the ownership of the shared packet buffer.
munmap requires 4083 cycles, and mmap 8495 cycles. With
all packets placed in the same memory page, we need one
munmap and mmap to transfer the page to a different process.
This costs significantly more (5.87×) than the context switch,
justifying our approach to isolation.
12Quadrant has zero software packet switching cost because it uses the ToR
switch and the NIC’s L2 to dispatch packets to different chains.
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Figure 9: End-to-end tail latency and CPU core usage achieved by Quad-
rant (Chain 1) as a function of latency SLO.

6.6 Scaling to 40 and 100 GbE NIC

Cloudlab only supports OpenFlow for 10 GbE NICs, so most
of our experiments use those. To show that Quadrant scales
to 40/100 GbE NICs, we set up a separate two-node cluster:
one node as the traffic generator and the other one as the
Quadrant worker. The traffic generator is a dual-socket 20-
core 2.2GHz Xeon E5-2630. The Quadrant worker is a dual-
socket 16-core 1.7GHz Xeon Bronze 3106. Both servers have
one 100Gbps single-port Mellanox ConnectX-5 NIC. The
worker has one additional 40Gbps single-port Intel XL710
NIC. They connect to an Edgecore 100BF-32X (32x100G)
switch. Experiments in §6.3 and §6.4 use this setup.

Results. Figure 9 shows that, for Chain 1, Quadrant is able,
as before, to adjust the number of cores used to serve traffic
for different latency SLOs, and utilize all available cores on
the worker to meet stringent SLOs, both for 40 GbE and
100 GbE. Chain 3 behaves similarly as Chain 1, but Chain 2,
because it is CPU heavy, needs more cores than we have to
saturate the NICs, so we have omitted the experiment. Over-
all, these experiments show that Quadrant’s design scales
seamlessly at higher NIC speeds.

6.7 Cooperative Scheduling

Do we need the Cooperative Scheduler? Quadrant’s co-
operative scheduler enables packet isolation, even for third-
party NFs. A weaker form of isolation, assuming that NFs
can be trusted, can be achieved using the Linux CFS sched-
uler, together with explicit handoff from one NF to another
using shared memory (an NF sets a flag to indicate packets
are ready to be processed by the next downstream NF). Un-
fortunately, this weaker alternative is also slower (Table 2);
Quadrant w/ Cooperative Scheduler outperforms Quadrant
w/ CFS by 40.7-95.2%. Note that the latter still outperforms
NFVNice w/ pkt copy, as Quadrant does not require expen-
sive cross-core packet copying for each inter-NF hop.
Cache and TLB effects. Cooperative scheduling involves
context switches between NF processes in a chain. It can also
flush caches and TLBs; we conduct an experiment to quantify
these. We run the same test chain, with 5 BPF modules, as in
§6.2 with four experimental groups: 1) Quadrant: the vanilla

NF Chain Length 1 2 3 4 5 6
Quadrant (coopsched) 4700 2200 1520 1180 960 810
Quadrant (CFS) 3340 1530 980 680 520 415
NFVNice w/ pkt copy 2920 1230 815 545 425 350
Table 2: Per-core NF chain throughput (kpps) w/ and w/o coopsched.

Metric Quadrant Local mem Dummy NF Single thread

Per packet cycles 2846 2746 2730 2592
Chain delay
in cycles

p50th 121536 116232 116008 85980
p99th 128116 122324 117892 87492

M
is
se
s dTLB [count] 72,864,218 68,259,827 61,251,661 1,185,591

dTLB [%] 0.52% 0.48% 4.07% 0.00%
iTLB [count] 11,542,564 12,325,256 9,615,381 591,737

iTLB [%] 478.18% 488.28% 379.31% 182.39%

M
is
se
s LLC cache 18,923,855 6,710,255 6,699,896 12,963,766

L1 dcache 508,578,460 417,298,551 333,262,806 327,837,034
L1 icache 41,272,281 37,127,027 30,856,178 17,568,605

Table 3: Overheads under isolation variants.

deployment w/o adaptive batch optimization; 2) Local mem:
the vanilla deployment that operates on one dummy packet
in the shared memory region; 3) Dummy NF: a chain of
dummy NFs that do not process packets, but simulate NF
cycle costs; 4) Single thread: a chain that runs in a single
thread. The traffic generator produces traffic (1024B packets)
to saturate the chain’s NIC queue so that each chain runs
at a batch size of 32, the NIC’s default batch size. The TLB
and cache misses are measured as the average value for a
15-second execution duration for 5 measurements.

Results. Table 3 shows NF runtime statistics. For all
multiple-process groups, we see higher iTLB and dTLB
misses. As shown, the number of dTLB misses is less than
1% of dTLB hits for cases that run a non-dummy NF, though
dTLB misses are less important for an NF’s performance.
(Quadrant uses 2 MB hugepages for packet memory for each
NF chain. Increasing this to 1 GB does not alter Quadrant’s
max throughput as there are few dTLB misses.)

All multi-process groups see higher iTLBmisses compared
to the single thread case because NF processes do not share
code in memory. Local mem and dummy NF perform sim-
ilarly in terms of per-packet cycle cost (and the number of
cache misses) because Local mem processes one packet that
resides in the chain’s local memory and is likely to benefit
from the L3 cache. Quadrant has a slightly higher per-packet
cost compared to the other two multi-process cases. We find
that the extra cost only comes from the first NF that copies
incoming packets. The 2nd-4th NFs in 1)-3) have the same
cycle cost (509 cycles / packet). These NFs benefit from L3
caching as the first NF’s runtime loads when copying packets
from the NIC’s buffer to the per-chain packet buffer.

In the above four cases, two major differences explain the
per-chain cycle cost: a) iTLB misses when deploying as a
multi-process chain and b) L3 cache misses when process-
ing network traffic. Quadrant incurs both; Local mem and
Dummy NF only the former, and Single thread only the latter.
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NF Chain Quadrant

Fixed-

small

(batch=32)

Fixed-

medium

(batch=128)

Fixed-

large

(batch=512)

Chain 1 306 246 305 260
Chain 2 116 106 116 62
Chain 3 322 260 313 142

Table 4: Per-core chain throughput (kpps) under different batch settings.

We calculate cycle cost for each for the 5-NF chain: for iTLB
misses it is 254 cycles / packet (or 50.8 cycles / packet / hop),
and cache misses add 100 cycles / packet. The former is extra
overhead of a context switch, which could be reduced by
tagged TLBs, while cache misses are unavoidable. Overall,
the amortized TLB overhead is relatively small compared to
the context switch itself.
Batching to reduce overhead. Quadrant uses batching to
amortize context switching overheads, and estimates an ap-
propriate batch size for an NF chain (§4). Here, we show
Quadrant’s batching by comparing the maximum per-core
throughput produced under Quadrant’s batching and other
schemes that use a fixed batch size for different chains.

Results. Table 4 demonstrates that Quadrant’s batch set-
ting performs significantly better than Fixed-small (which
uses a small batch size of 32) and Fixed-large (batch size
of 512) batch settings, and always produces a throughput
that matches the highest throughput among all experimen-
tal groups. Surprisingly, using a large batch size decreases
per-core throughput of NF chains.

7 Discussion

Quadrant can leverage prior work to scale and better support
stateful NFs. We have left this to future work.
Consistency model.While Quadrant is consistent for per-
flow state, it needs to be extended to ensure consistent up-
dates to global state (e.g., per-device packet counts in 4G/5G
Evolved Packet Core (EPC)). Prior work (S6 [55]) has ex-
plored mechanisms to ensure eventual consistency of global
state, and can be incorporated into Quadrant.
Ingress scalability. Quadrant’s ingress runs as software,
and installs rules in harware switches, for when OpenFlow
becomes available. Fastpass [41] has demonstrated that
software-based per-flow routing is feasible and efficient
even at datacenter scale. SNF [49] used software ingress,
and it also showed that its implementation incurs negligible
latency and can scale-out dynamically to adapt to traffic
volume. Quadrant can incorporate these to scale better.
Hardware ingress. Modern hardware switches have
enough resources for per-flow rules (e.g., NoviFlow switches
have 225K entries [15]). Finally, in a multi-tenant cloud
environment, Genesis [51] has explored managing flow
space of hardware switches for isolation.

8 Related Work

FaaS is widely available on cloud platforms [7, 10, 31, 47],
and as open-source [12, 34]. They are designed for latency-
insensitive applications, not for NFV. Research on FaaS has
two styles. The first improves aspects of FaaS. Sock [32] and
LightVM [29] optimize sandbox startup time. SAND [1] op-
timizes IPC performance. E3 [28] accelerates FaaS execution
with SmartNICs. The second explores new applications made
possible by FaaS, such as real-time big data analysis [18, 43]
and video encoding [6].
On NFV/FaaS, SNF [49] proposed FaaS to execute NFs. It

isolates NFs via LXC containers and stores NF state via a key-
value store. However, SNF does not support NF chains, nor
does it ensure latency SLOs (its 99%-ile latency in some cases
is 2.8 ms [49], an order of magnitude more than Quadrant).
NFV frameworks [14, 19, 37, 40, 56] deploy and orches-

trate fast NF chain execution. E2 [37] deployed NF chains
using commodity servers without isolation. NetBricks [40]
isolates NFs with a safe Rust runtime, requiring NF vendors
to use Rust. In contrast, most commercial NFs are packaged
containers or VMswithout source [39]. EdgeOS [44] employs
an expensive isolation via packet copying for each NF. Some
work leverages specialized hardware [14, 17, 22, 24, 56, 57].
Quadrant sees NFV’s fundamental motivation as reducing de-
ployment cost and complexity, and does not use specialized
hardware. Some work [19, 23, 25, 36, 52] examines dirty-slate
solutions to optimize NFV’s performance. They often work in
a restricted setting without considering multi-tenant cluster
deployments; that said, this line of work is largely compati-
ble with Quadrant and these insights have been and could
be further integrated. Another line of research [13, 49, 55]
considers optimizations for stateful NFs. Quadrant supports
stateful NFs; such prior work can also be integrated.

9 Conclusions

Quadrant supports NFV in cloud computing environments
using commodity software and hardware, fulfilling NFV’s
original ambitions. It extends cloud abstractions, and eases
the deployment of third-party NFs. With its spatiotemporal
packet isolation, it outperforms state-of-the-art NFV plat-
forms that use alternative isolation mechanisms, and per-
forms as well as custom NFV systems that do not provide
NF isolation.
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