
A preliminary version of this paper appeared in the 32nd International Colloquium on Au-
tomata, Languages and Programming, ICALP 2005, Lecture Notes in Computer Science Vol.
???, Giuseppe F. Italiano, Catuscia Palamidessi and Moti Yung eds, Springer Verlag, 2005. This
is the full version.

Append-Only Signatures

Eike Kiltz∗ Anton Mityagin† Saurabh Panjwani‡ Barath Raghavan§

May 6, 2005

Abstract

We present a new primitive—Append-only Signatures (AOS)—with the property that any
party given an AOS signature Sig[M1] on message M1 can compute Sig[M1‖M2] for any
message M2, where M1‖M2 is the concatenation of M1 and M2. We define the security of
AOS, present concrete AOS schemes, and prove their security under standard assumptions.
In addition, we find that despite its simple definition, AOS is equivalent to Hierarchical
Identity-based Signatures (HIBS) through efficient and security-preserving reductions. Fi-
nally, we show direct applications of AOS to problems in network security. Our investigations
indicate that AOS is both useful in practical applications and worthy of further study as a
cryptographic primitive.

Keywords: Algebraic Signatures, Append-only Signatures, Hierarchical Identity-based Sig-
natures

∗ Department of Computer Science and Engineering, University of California, San Diego, San Diego, USA.
Email: ekiltz@cs.ucsd.edu. URL: http://www.kiltz.net/. Research supported by a DAAD postdoc fellow-
ship.

† Department of Computer Science and Engineering, University of California, San Diego, San Diego, USA.
Email: amityagin@cs.ucsd.edu. Research supported in part by NSF grants ANR-0129617 and CCR-0208842.

‡ Department of Computer Science and Engineering, University of California, San Diego, San Diego, USA.
Email: panjwani@cs.ucsd.edu. URL: http://www.cse.ucsd.edu/users/spanjwan/. Research supported in part
by NSF grant 0313241. Any opinions, findings, and conclusions or recommendations expressed in this material
are those of the author(s) and do not necessarily reflect the views of the National Science Foundation.

§ Department of Computer Science and Engineering, University of California, San Diego, San Diego, USA.
Email: barath@cs.ucsd.edu. Research supported by a NSF Graduate Research Fellowship.

Contents

1 Introduction 1

2 Append-only Signatures 3

3 Efficient AOS Constructions 5

3.1 Certificate-Based Append-Only Signatures . 5
3.2 Shorter Signatures via Aggregation . 7
3.3 Compact Signatures via the Boneh-Goh-Boyen HIBE 7
3.4 AOS via Hash Trees . 8
3.5 AOS via One-time Signatures . 10

4 Relations between HIBS and AOS 10

4.1 Definition of HIBS . 11
4.2 Constructing AOS from HIBS . 12
4.3 Constructing HIBS from AOS . 13
4.4 Discussion . 15

5 Applications 16

5.1 Wide-area Routing Protocol Security . 16
5.2 Secure Delegation of Resources . 17

6 Final Remarks and Open Problems 17

6.1 Finalization of AOS signature . 17
6.2 Restricted AOS . 17
6.3 Shorter AOS signatures . 18

A Public Key Signature Schemes 21

B Proof of Theorem 3.1 22

C Proof of Theorem 3.2 25

D AOS with short key size 28

1 Introduction

In many real-world applications, users and programs alike require notions of delegation to model
the flow of information. It is often required that delegation from one party to another enables
the delegatee to “append” to the information it received but to do nothing more. For example,
in wide-area Internet routing, each network passes a routing path advertisement to its neighbor-
ing networks, which then append to it information about themselves and forward the updated
advertisement to their neighbors. For security, the route advertisements must be authenticated;
intermediate networks must be incapable of modifying routes except according to the protocol
(that is, by appending their names to already-received advertisements). Likewise, in the context
of secure resource delegation for distributed systems, users need to delegate their share of re-
sources to other users, who may then re-delegate to other users by including their own resources
in the pool. In many of these applications, it is desirable that delegation is possible without
parties having to share any cryptographic keys and that the authenticity of any information
received through a series of delegations is verifiable based only on the identity of the first party
in the chain.

To directly address the needs of these applications, we present a new cryptographic primitive
called Append-Only Signatures (AOS). Informally, an AOS scheme enables the extension of
signed messages and update of the corresponding signatures, without requiring possession of the
signing key. That is, any party given an AOS signature Sig[M1] on message M1 can compute
Sig[M1‖M2] for any message M2, where M1‖M2 is the concatenation of M1 and M2. The
verifier of the final signature needs the initial signer’s public key but does not need to know
the public keys or any other information from intermediate signers except the message data
appended. Clearly, such a scheme cannot be secure according to the standard notion of security
for signatures. Instead, we define an AOS scheme to be secure if it is infeasible to forge signatures
of messages that are not obtained by extending already-signed messages. We define the security
of AOS more formally in Section 2.

We present several provably secure AOS schemes, offering different tradeoffs of flexibility
and efficiency. Our first construction shows a generic approach to building AOS schemes from
any standard digital signature scheme SIG using certificate chains. The construction works
as follows: The secret and public keys for the AOS scheme are obtained by running the key
generator for SIG. For any message M = M1‖M2‖ · · · ‖Mn, each Mi being a symbol in some
predetermined message space, the AOS signature of M is defined as a sequence of n public keys
pk1, pk2, · · · , pkn (generated using the key generator for SIG) and a sequence of n certificates
binding the message symbols to these public keys. The ith certificate in the chain binds the
message symbolMi to the corresponding public key pki and is signed using the secret key, ski−1,
corresponding to pki−1. The secret key, sk0, of the AOS scheme signs the first certificate in the
chain while the secret key skn (corresponding to the last public key), is revealed as part of the
AOS signature and is used for appending new symbols to M . We observe that if the message
space is small enough, we can make use of “weaker”, and more efficient, signature schemes
without compromising the security of the resulting AOS scheme. Furthermore, using aggregation
techniques[BGLS03, LMRS04], the size of the certificate chain can be made a constant, that is,
independent of the number of message symbols appended, which leads to shorter AOS signatures
than those in the basic scheme. (See Section 3 for more details on this scheme.)

Since signature schemes exist given the existence of one-way functions [Rom90], the above
construction implies the existence of AOS under the same assumption. We also present a more
efficient construction of AOS for applications in which the message space is constant size and
the total number of append operations performed is also constant. This construction is based on

1

a stronger assumption and makes use of pseudorandom generators and collision-resistant hash
functions (CRHFs). We remark that both these schemes—one using CRHFs and one based on
certificate chains—are in the standard model; neither of them makes use of random oracles.

Relation to Hierarchical Identity-Based Signatures. Identity-Based Signature (IBS)
schemes, due to Shamir [Sha85], are signature schemes in which the identity of the signer (for
example, her email address) plays the role of his public key. Such schemes assume the existence
of a trusted authority that holds a master public-private key pair that is used to assign secret
keys to users based on their identities. Anyone can verify signatures on messages signed by a
user knowing only the master public key and the identity of that user. Hierarchical IBS (HIBS)
schemes, proposed by Gentry and Silverberg [GS02], are a natural generalization of this concept
to a setting in which users are arranged in a hierarchy and a user at any level in this hierarchy
can delegate secret keys to her descendants based on their identities and her own secret key. To
verify the signature created by any user, one needs to know the identity of the user (and her
position in the hierarchy) and the public key of the root user.
HIBS can be implemented using certificate chains (as suggested in [GS02]) and the resulting

construction bears a strong resemblance to the certificate-based construction of AOS we give
in this paper. Upon closer examination, we find that the similarity between the two construc-
tions is not accidental: it is an artifact of the close relationship between the two primitives
themselves—AOS and HIBS are, in fact, tightly equivalent. This means that (a) there exist
generic transformations from any HIBS scheme into a corresponding AOS scheme and, likewise,
from any AOS scheme into a corresponding HIBS scheme; and (b) these transformations are
extremely efficient (the derived scheme is as efficient as the scheme being derived from) and
highly security-preserving (an adversary attacking the derived scheme can be transformed into
an adversary attacking the original one, losing only a constant factor in efficiency and query
complexity).
A benefit of this equivalence is that it considerably simplifies the notion of HIBS and makes

security analysis for HIBS schemes less onerous: AOS is simpler than HIBS, and, for any HIBS
scheme, it is typically easy to find an equivalent AOS scheme whose security properties carry
over to the corresponding HIBS scheme. For example, our security proof for certificate-based
AOS translates to a security proof for certificate-based HIBS (originally proposed in [GS02]).
Although this construction of HIBS was known prior to our work, it was never analyzed in the
literature, and, to the best of our knowledge, we give the first proof of security for it. Further-
more, our construction of AOS based on pseudorandom generators and CRHFs yields a novel
approach to designing HIBS and can be useful for some restricted scenarios (for example, in a
constant-depth hierarchy wherein each user signs messages from a constant-size message space).
We remark that both these constructions yield HIBS schemes in the standard model and neither
involves the use of computationally intensive bilinear maps (this is in contrast with some recent
results on HIBS [CHYC04]). Finally, we believe that AOS is a more intuitive primitive to study
because it clearly reflects the requirements of our problem domains (such as secure routing) and
is better suited for analyzing the problems that motivate our work.

Related Work. Append-only signatures belong to a general class of primitives called alge-
braic signatures. Informally, an algebraic signature scheme allows the creation of signatures
on a new message M using the signatures on some known messages, M1,M2, . . . ,Mn, and the
public key, provided the new message can be obtained from the known messages using some
prespecified set of (n-ary) operations, say O = {f1, f2, · · · , fm}. That is, given the signatures,
sig[M1], . . . , sig[Mn] and the public key, it is easy to compute sig[fi(M1, . . . ,Mn)] for any

2

fi ∈ O. In our setting, each fi has arity 1 and appends some fixed message symbol Mi to an in-
put messageM . Security for algebraic signatures is defined in a manner similar to our approach
to security of AOS (that is, it should be hard to forge signatures of messages that cannot be
obtained by applying the operations in O to already-signed messages). Examples of algebraic
signatures studied in the literature include transitive signatures by Micali and Rivest [MR02],
homomorphic signatures by Johnson, Molnar, Song and Wagner [JMSW02], and graph-based
algebraic signatures by Hevia and Micciancio [HM02].

Although no obvious relation exists between our primitive and any of the previously studied
algebraic signature primitives, we do note that some of the techniques we use in our constructions
parallel prior techniques. For example, our construction of AOS schemes using CRHFs can
be viewed as a special instance of graph-based algebraic signature schemes studied in [HM02]
(although the set of update operations considered there are different from the append operation
that we consider). Also, [JMSW02] introduces the notion of redactable signatures—signatures
that allow “deletion” of message symbols without access to the secret key—and one of the
constructions for this primitive given in their paper is also an example of graph-based algebraic
signatures.

A concept closely related to AOS (and algebraic signatures, in general) is that of incremental
signatures, proposed by Bellare, Goldreich, and Goldwasser [BGG94, BGG95]. Given an incre-
mental signature on a message M , it is possible to compute the signature on a slightly updated
version of M in time proportional to the “amount” of change made to M (rather than on the
length of the entire message). The update operation, however, requires access to the initial
signer’s secret key whereas, in the case of AOS, a message can be updated by any party. More-
over, the update operations considered in [BGG94, BGG95] are replace, insert and delete

whereas we are interested in performing append operations on messages.

Application to Secure Routing. In our discussion of applications of AOS, which we expand
upon in Section 5, our main focus is on the problem of wide-area Internet routing security. We
argue that the existence of secure AOS schemes is a sufficient condition for guaranteeing an
important security property of routing protocols, namely, authenticity of route announcements.
Though routing is an important component of modern communication networks, its security has
received little attention from the cryptography community (although a rich literature exists in
the computer networks community [KLS00, SRS+04, HPS04, WKvO05]). Most cryptographic
protocols assume that the network is an untrusted black box possibly under full control of the
adversary; while this is useful when modeling the security of end-to-end protocols, it fails to
capture the security of the underlying routing protocols. We are motivated by this apparent
gap, as routing is not just an application in which cryptography is required, but a necessary
component of the networks used by most cryptographic protocols.

2 Append-only Signatures

Informally, append-only signatures (AOS) are signatures that enable the public extension of
existing signatures. That is, any party given an AOS signature Sig on a message (M1, . . . ,Mn)
can compute an AOS signature on any message (M1, . . . ,Mn,Mn+1). (As in the introduction,
one could represent the message (M1, . . . ,Mn) as the string M1|| . . . ||Mn which better captures
the idea of appending. However, since we want to differentiate between a message of the form
“A”‖“B” and that of the form “AB” (“A”,“B” and “AB” being three different message symbols),
we prefer to think of messages as n-tuples). Besides the append operation, AOS is the same

3

as ordinary signatures. That is, given only an AOS signature on the message (M1, . . . ,Mn) it
should be infeasible to forge an AOS signature on any message not having (M1, . . . ,Mn) as a
prefix. In terms of conventional signatures, AOS may seem strange, as it allows the “forgery” of
signatures on messages not previously obtained. In particular, given a signature on the empty
message ε, a signature on any message (M1, . . . ,Mn) can be computed. In the context of AOS,
we view this as a feature, and, as we will show, this is useful in several applications.

We now formally define AOS and the corresponding notion of security. Let AOS.MSpace be
any set of symbols (for example, {0, 1} or {0, 1}∗). For an integer n ≥ 0, a message of length
n is an n tuple of symbols written as M [1..n] = (M1,M2, . . . ,Mn) with Mi ∈ AOS.MSpace.
The special case of n = 0 is the empty message, denoted as ε, also written as M [1..0]. We use
the symbol v to denote the prefix relation over the messages: for a given message M [1..n] =
(M1,M2, . . . ,Mn), any message from the set {M [1..i], 0 ≤ i ≤ n} is a prefix. Note that ε is a
prefix of any other message.

An append-only signature (AOS) scheme with respect to the message space AOS.MSpace is a
collection of three algorithms: a setup algorithm (AOS.Setup), an append algorithm (AOS.Append),
and a verify algorithm (AOS.Vfy), defined as follows:

• AOS.Setup (the key generation algorithm) takes the security parameter as input and out-
puts a pair of keys: the public key AOS.pk and the secret key Sig[ε], which is the signature
on the empty message ε.

• AOS.Append (the append algorithm) takes the public key AOS.pk, a signature on a message
M [1..n − 1] = (M1, . . .Mn−1), of length n − 1, and a symbol Mn ∈ AOS.MSpace and
produces a signature on the message M [1..n] = (M1, . . . ,Mn).

• AOS.Vfy (the verification algorithm) takes the public key AOS.pk, a message M [1..n], and
a signature sig, and returns either true or false.

All algorithms can be randomized and all of them must be polynomial-time in the security
parameter. Additionally, the scheme should have the property that for any pair (AOS.pk, Sig[ε])
generated by AOS.Setup(1k) and any message M [1..n] = (M1,M2, . . . ,Mn) (where n is polyno-
mially bounded in the security parameter), the signature on M [1..n] given by

sig = AOS.Append(AOS.pk,M [1..n− 1],AOS.Append(AOS.pk,M [1..n− 2], . . .
. . . ,AOS.Append(AOS.pk, Sig[ε],M1), · · · ,Mn−1),Mn) (1)

should be accepted by a verification algorithm. That is, AOS.Vfy(AOS.pk,M [1..n], sig) must
return true.

The way an AOS signature is defined in Eq. (1) implies that the only way of append-
ing a sequence of symbols to a given AOS signature is to append the symbols one-by-one.
This means that the distribution of an AOS signature created by appending a symbol Mn to
a message (M1, · · · ,Mn−1) is the same as the distribution of the signature on the message
(M1, · · · ,Mn−1,Mn) when generated from scratch (using the secret key Sig[ε]). This fact en-
sures history independence of AOS: that is, no party, given an AOS signature, can tell whether
the signature was created by the owner of the secret key or whether it passed through multiple
parties that appended symbols at every step1. History independence is a useful property to have

1The above definition precludes trivial schemes of the following form: Let SGN = (SGN.G, SGN.S, SGN.V)
be any standard digital signature scheme. Construct an append-only signature scheme using SGN in which the
signature of any message M [1..n] = (M1, · · · ,Mn) is (SGN.S(M [1..n]), n) and the program AOS.Append takes a

4

in most applications (as already highlighted in previous work on algebraic signatures [JMSW02]
and incremental signatures [BGG95]).

Definition 2.1 [AOS-UF-CMA] Let AOS = (AOS.Setup,AOS.Append,AOS.Vfy) be an AOS
scheme, let k be the security parameter, and let A be an adversary. We consider the experiment:

Experiment Expaos-uf-cma
AOS ,A (k)

MSGSet ← ∅ ; (AOS.pk,Sig[ε])
$← AOS.Setup(1k)

(M [1..n], sig)
$← AAOSSign(·)(AOS.pk)

if AOS.Vfy(AOS.pk,M [1..n], sig) = true

and ∀J [1..j] vM [1..n] : J [1..j] 6∈ MSGSet
then return 1 else return 0

Oracle AOSSign(M [1..n])

MSGSet ← MSGSet ∪ {M [1..n]}
return Extract(M [1..n])

Oracle Extract(M [1..i]) // defined recursively

if i = 0 then return Sig[ε]
else if Sig[M [1..i]] = defined

then return Sig[M [1..i]]

else Sig[M [1..i]]
$← AOS.Append(AOS.pk,M [1..i− 1],Extract(M [1..i− 1]),Mi)

return Sig[M [1..i]]

The aos-uf-cma-advantage of an adversary A in breaking the security of the scheme AOS is
defined as

Advaos-uf-cma
AOS ,A (k) = Pr[Expaos-uf-cma

AOS ,A (k) = 1] ,

and AOS is said to be unforgeable under chosen message attacks (aos-uf-cma-secure) if the above
advantage is a negligible function in k for all polynomial-time adversaries A.

Note that in our definition of security, adversary A is given access to the oracle AOSSign(·), not
to the oracle Extract(·). (The latter is used internally by AOSSign(·) to create intermediate
signatures.) The history independence property of AOS ensures that the adversary can get no
advantage when given the power to decide “how” the signature on any message is to be created
by AOSSign(·) (for example, whether it asks for a message (M1,M2) to be signed from scratch
or by first signing M1 and then appending M2, it would get the same reply in return).

3 Efficient AOS Constructions

3.1 Certificate-Based Append-Only Signatures

We present an efficient construction of a provably-secure AOS scheme based on a public-key
signature scheme. Let SGN = (SGN.G, SGN.S, SGN.V) be a signature scheme with a space of
public keys SGN.PKSpace and message space SGN.MSpace = AOS.MSpace× SGN.PKSpace. (A
formal definition of a public-key signature scheme including a security definition is given in
Appendix A.) That is, messages to be signed by SGN are tuples of the form (M,pk), where
M ∈ AOS.MSpace and pk ∈ SGN.PKSpace. Intuitively, an AOS signature Sig of a message
M [1..n] consists of the following elements:

(pk1, sig1, . . . , pkn, sign, skn),

message M [1..n], its signature (σ, n) and a new symbol M [n + 1] and simply outputs (σ, n). Verification of a
signature (σ, n) on message M [1..N] (N ≥ n) is carried out by testing if σ is the signature, according to SGN ,
on M [1..n]. Although this scheme allows appending to already signed messages in an arbitrary manner, one can
easily distinguish between signatures created by such append operations and those created from scratch.

5

where for 1 ≤ i ≤ n, (pk i, sk i) are random public/secret key pairs of the public-key signature
scheme SGN and sig i is a signature on the tuple (Mi, pk i) under the secret key ski−1. Note that
the secret key sk i used to sign sig i is entangled with sig i+1 by signing its corresponding public
key pk i, thereby certifying its validity. For this reason, this construction is sometimes referred
to as a certificate chain. The signature sig0 needs to be signed with the secret key sk 0, which
we define to be the master secret key.

More formally, we construct the AOS scheme AOS1 with the message space AOS.MSpace

as specified below:

• AOS.Setup(1k) (the setup algorithm):
Run SGN.G(1k) to generate a pair (sk0, pk0). Set AOS.pk ← pk0 and Sig[ε] ← (sk0).
Return (AOS.pk, Sig[ε]).

• AOS.Append(AOS.pk, Sig[M [1..n]],Mn+1) (the append algorithm):
Parse Sig as (pk1, sig1, . . . , pkn, sign, skn). If n = 0, then Sig[ε] consists of a single
secret key sk0. Run SGN.G(1k) to generate a pair (skn+1, pkn+1). Compute sign+1 ←
SGN.Sskn

(Mn+1, pkn+1). Return (pk1, sig1, . . . , pkn, sign, pkn+1, sign+1, skn+1).

• AOS.Vfy(AOS.pk,M [1..n], Sig) (the verification algorithm):
Parse Sig as (pk1, sig1, . . . , pkn, sign, skn). If n = 0, then Sig = (sk0). Set pk0 to be the
master public key AOS.pk. For i = 1..n−1 verify that SGN.V(pki−1, sig i, (Mi, pki)) = true.
If any of the verifications fail, return false. If all the verifications succeed, verify that
(skn, pkn) is a valid secret key/public key pair: pick any message M ∈ SGN.MSpace and

compute sig
$← SGN.S(skn,M). Return true if SGN.V(pkn, sig ,M) = true and false

otherwise.

The length of a signature of AOS1 grows linearly with the number of symbols in a message.
The efficiency of AOS1 is summarized in Table 1. We prove aos-uf-cma security of AOS1
provided that the original public-key signature scheme SGN is sig-uf-cma secure (as defined in
Appendix A).

Theorem 3.1 The AOS scheme AOS1 is aos-uf-cma secure assuming that the public-key sig-
nature scheme SGN is sig-uf-cma secure.

The full proof of Theorem 3.1 is in Appendix B. Here we sketch the main ideas of why this
construction works. Intuitively, in order to break the aos-uf-cma security of AOS1, an adversary
has two choices between which we must distinguish. First, she could try to forge a signature on
a prefix of a message she already knows the signature of. Since a valid AOS1 signature of this
prefix (say, of length n′) has to contain the secret key skn′ in cleartext, this would imply a full
break of the security of the signature scheme. Second, the adversary could try to forge an AOS
signature on a message that is different from all those with known signatures. To do so, the
adversary could use existing public/secret key pairs, meaning she has to produce (for some i)
a new signature on a tuple (Mi, pk i) under an unknown secret key and a different message Mi.
Otherwise, the adversary breaks the certificate chain. That is, at some position i, the adversary
creates a fresh secret-public key pair (sk i, pk i) and uses sk i to create sigi. However, sigi−1 is a
signature on the public key pk i and the symbolMi−1 under the secret key sk i−1. In order to use
a new secret key sk i to create sigi, the adversary has to forge a signature under the unknown
secret key sk i−1. This clearly contradicts the uf-cma security of the signature scheme.

6

Metric Certificate-based AOS

Signature length n SGN signatures, n SGN public keys, 1 SGN secret key

Setup time 1× SGN.G(·)
Append time 1× SGN.G(·), 1× SGN.S(·)
Verify time (n+ 1)× SGN.V(·), 1× SGN.S(·)

Table 1: Efficiency of certificate-based AOS. Data is given for messages of length n.

3.2 Shorter Signatures via Aggregation

An aggregate signature scheme, ASGN = (ASGN.G,ASGN.S,ASGN.AGG,ASGN.V), allows the
aggregation of n signatures on n distinct messages from n distinct users into a single signature.
Its verification algorithm, ASGN.V(n, ·), takes an aggregated signature, n messages, and n public
keys and verifies that the n users signed the n messages. A sequential signature aggregation
algorithm assumes to receive the signatures sequentially: given an aggregated signature of n−
1 messages and a signature on an nth message, it outputs an aggregated signature for all n
messages.

When using the certificate-based construction of AOS from Section 3.1, we can use sequential
signature aggregation to shrink the size of the signature (without significantly decreasing security
or efficiency). To be more precise, the length of an AOS signature of a message of length n can
be condensed to one signature of ASGN , n public keys of ASGN , and one secret key of ASGN .
We summarize the efficiency of this approach in Table 2. We note that there are two known
signature aggregation techniques. The first scheme, given in [BGLS03], is based on bilinear
maps. The second scheme (only supporting sequential aggregation) is from [MOR01] and can
be based on homomorphic trapdoor permutations (such as RSA). We note that both aggregation
schemes are in the random oracle model.

Metric Certificate-based AOS with aggregation

Signature length 1 ASGN signature, n ASGN public keys, 1 ASGN secret keys

Setup time 1× ASGN.G(·)
Append time 1× ASGN.G(·), 1× ASGN.S(·), 1× ASGN.AGG(·)
Verify time 1× ASGN.V(n, ·), 1× ASGN.V(1, ·), 1× ASGN.S(·)

Table 2: Efficiency of AOS with signature aggregation. Data is given for messages of length n.

3.3 Compact Signatures via the Boneh-Goh-Boyen HIBE

Even if we apply the techniques of signature aggregation to our certificate-based AOS scheme,
the signature length remains linear in n. Based on a recent HIBE construction from Boneh, Goh,
and Boyen [BBG05] we construct an AOS scheme AOS2 whose signatures are of size square
root of the maximum message length. The scheme is in fact a hybrid between the two schemes
from [BBG05, BB04] exploiting a common algebraic structure. It is based on bilinear groups.
The scheme is described in Appendix D and its efficiency is given in Table 3.

7

Metric HIBE-based AOS2
Signature length ≤ 2

√
d+ 1 elements ∈ G1

Setup time 1× e(·, ·), 1 exp, 2
√
d+ 1 rand number gen ∈ G1

Append time ≤
√
d+ 3 exp/mult

Verify time (
√
d+ 1)× e(·, ·), d+

√
d exp/mult

Table 3: Efficiency of AOS2. d represents the maximum message length. e(·, ·) is a pairing
operation on elements of the group G1 as used by the HIBE scheme.

ε

〈0〉 〈1〉
〈0, 0〉 〈0, 1〉〈1, 0〉 〈1, 1〉
[0, 0] [0, 1]

[1, 0] [1, 1]

[0] [1]

ε̃

ε

〈0, 1〉

[0, 0]

[1]

ε̃

Figure 1: Structure of the hash-tree construction for d = 2. The diagram on the left depicts the
hash tree. The diagram on the right highlights the node u = 〈0, 1〉 (shown in black) and the set
of its complements, Comp(u) (shown in gray).

3.4 AOS via Hash Trees

If the number of symbols in the alphabet AOS.MSpace is small, AOS can be efficiently imple-
mented using hash trees [Mer88]. This approach suffers from dramatic complexity blowup as
the size of the message space increases, but uses only secret-key primitives and provides good
security guarantees. We believe that this construction is useful in computationally constrained
applications.

Next we construct an AOS scheme AOS3 with fixed message space AOS.MSpace = {0, 1};
the messages of AOS3 are limited to length at most d. The construction uses a pseudorandom
generator and a collision-resistant hash function (for a formal definition of the two primitives
we refer the reader to the textbook of Goldreich [Gol01]). Let G : {0, 1}k → {0, 1}2k be a
pseudorandom generator. Denote Gi : {0, 1}k → {0, 1}k to be the i-th k -bit component of G for
i ∈ {0, 1}. Let H : {0, 1}2k → {0, 1}k be a collision-resistant hash function.
Consider the left graph T depicted in Figure 1. T consists of the upper tree UT and lower

tree LT . The top node ε is called the source and the bottom node ε̃ is called the destination.
Let 〈v1, . . . , vj〉 denote the node at level j below ε (in the upper tree) such that each vi ∈ {0, 1}
is an index of a node taken at the i-th level on the path from ε to 〈v1, . . . , vj〉. A mirror image
of this node in the lower tree is denoted as [v1, . . . , vj].

Let u = 〈v1, . . . , vj〉 be any node in the upper tree of the graph. We define the complement

8

of u, denoted Comp(u), to be the minimal set of nodes in LT − {ε̃} such that every path from
ε to ε̃ passes through exactly one node from {u} ∪ Comp(u). An example of a complement
set is given in Figure 1 (the right graph). Let ¬ denote the not operator. Then Comp(u) =
{[v1, . . . , vi−1,¬vi] | i = 1, . . . , j}.
In AOS3, we associate every node of the graph T with a secret key. Keys are assigned in a

top-down manner, starting with a random key for the root ε of UT . Furthermore, for nodes in
UT everybody can compute key(〈v1, . . . , vj , 0〉) and key(〈v1, . . . , vj , 1〉) from key(〈v1, . . . , vj , 0〉)
(using the pseudo random generators G0(·), G1(·)) and for nodes in LT everybody can compute
key([v1, . . . , vj]) from key([v1, . . . , vj , 0]) and key([v1, . . . , vj , 1]) (using the hash function H(·, ·)).
The nodes between LT and UT are “connected” through the pseudorandom generator G0(·).
The secret key is key(ε), the public key is key(ε̃). The AOS of a node 〈v1, . . . , vn〉 (representing
the message M [1..n] = (M1, . . . ,Mn) ∈ {0, 1}n, n ≤ d) is given by the set of keys {key(x) | x ∈
{〈v1, . . . , vn〉}∪Comp(〈v1, . . . , vn〉)}. Verification of a given AOS is done by computing top-down
the corresponding keys in LT and checking if the last key matches the public key key(ε̃). The
algorithms constituting AOS3 are defined as follows:

• AOS.Setup(1k):

Pick key(ε)
$← {0, 1}k ; Sig[ε]← key(ε).

Compute key(u) ∈ {0, 1}k for all nodes u ∈ T as follows:
For every node 〈v1, . . . , vj〉 ∈ UT recursively compute

key(〈v1, . . . , vj〉) = Gvj
(key(〈v1, . . . , vj−1〉)).

For every node c = [v1, . . . , vd] at the d-th level of LT key(c) = G0(〈v1, . . . , vj〉).
For the remaining nodes in LT recursively compute

key([v1, . . . , vj]) = H(key([v1, . . . , vj , 0]), key([v1, . . . , vj , 1]));
The public key is key(ε̃) = H(key([0]), key([1])).

Return (key(ε), key(ε̃)).

• AOS.Append(Sig[M [1..n]],Mn+1): //denote 〈M1, . . . ,Mn〉 as u
Parse Sig as a set {key(x) | x ∈ {u} ∪ Comp(u)}.
Compute key(〈M1, . . . ,Mn+1〉) = GMn+1(key(〈M1, . . . ,Mn〉)).
Compute key([M1, . . . ,Mn,¬Mn+1]) from key(〈M1, . . . ,Mn〉) by iterating G(·) and H(·, ·)
// Note that Comp(〈M1, . . . ,Mn+1〉) = [M1, . . . ,Mn,¬Mn+1] ∪ Comp(u).

Return {key(x) | x ∈ {〈M1, . . . ,Mn+1〉} ∪ Comp(〈M1, . . . ,Mn+1〉)}.

• AOS.Vfy(AOS.pk,M [1..n], Sig) :
Let u = 〈M1, . . . ,Mn〉. Parse Sig as a set {key(x) | x ∈ {u} ∪ Comp(u)}.
By iterating G(·) and H(·, ·) compute key(·) for all the descendants of {u} ∪ Comp(u).
If key(ε̃) = AOS.pk return 1, otherwise return 0.

We give the efficiency of this scheme in Table 4. We prove aos-uf-cma security of the AOS3
scheme assuming the security of the underlying functions G(·) and H(·, ·):

Theorem 3.2 If G(·) is a secure pseudorandom generator, G0(·), G1(·), are secure one-way
functions and H(·, ·), G0(·), and G1(·) are all collision-resistant hash functions, then AOS3 is
aos-uf-cma secure.

The proof can be found in Appendix C.

9

Metric Hash-tree based

Signature length (n+ 1) k-bit blocks

Setup time (2d+1 − 1)×G(·), (2d − 1)×H(·, ·)
Append time 2d−n ×G(·), (2d−n−1 − 1)×H(·, ·)
Verify time (2d−n+1 − 1)×G(·), (2d−n + n− 1)×H(·, ·)

Table 4: Efficiency of the hash-tree based scheme AOS3. d represents the maximum message
length, n represents the length of a given message, and k is the security parameter.

3.5 AOS via One-time Signatures

We observe that we can combine the ideas of certificate-based AOS (Section 3.1) and hash-tree
AOS (Section 3.4) to gain a more efficient append-only signature scheme when the message
space is small. Assume the message space AOS.MSpace consists of m elements. Then we can
use our certificate-based construction AOS1 instantiated with a m-time signature scheme. m-
time signatures can be efficiently constructed using hash-trees (see [BM96], [HM02], [Mer88],
and [RR02] for the definition and efficient constructions of m-time signatures). In addition,
the security proof of AOS1 guarantees unforgeability if SGN is at least an |AOS.MSpace|-time
signature scheme. Note that in contrast to AOS3, the length of the AOS messages in this
construction is unbounded2.

4 Relations between HIBS and AOS

In this section, we show that the concepts of AOS and Hierarchical Identity-based Signatures
(HIBS) are in fact equivalent. Before we present the poly-time reductions between the AOS and
HIBS, we first review related concepts and relationships.

In Identity-based Signature (IBS) schemes, the identity of a sender (for example, an email
address) is used as a public key for verification of the signature. This approach assumes the
existence of a trusted party (the certificate authority), which assigns secret keys to all users.
The certificate authority has a pair of keys: a master public key and a master secret key; the
master secret key is used to delegate keys to the users and the master public key is used for
signature verification. Anyone can verify signatures on messages signed by any user, knowing
only the master public key and the identity of that user.

Hierarchical Identity-based Signature (HIBS) schemes are a natural generalization of IBS to
the setting with a hierarchical organization of users. Assume that the users are structured in a
tree with a root being the certificate authority. Descendants of a user are the usernames that
contain this user’s name as a prefix; the canonical example involves domain names. In HIBS,
each individual user can play the role of a certificate authority and can delegate secret keys
to his descendants. As in IBS, a secret key allows a user to sign arbitrary messages such that
anyone is able to verify the signature knowing only the identity of the sender and the master
public key (announced by the certificate authority, who can be viewed as the root user). A
formal description of HIBS follows.

Hierarchical Identity-based Encryption (HIBE) assumes the same hierarchy of users as HIBS
and provides encryption/decryption mechanisms rather than signatures. In HIBE, anyone can

2Similar ideas were used by Abdalla and Reyzin [AR00] who who suggested how to improve the efficiency of
binary certification method for constructing forward-secure signatures (see also Bellare and Miner [BM99]).

10

encrypt data to any user in the hierarchy knowing only the user’s identity and the master public
key; the ciphertext can only be decrypted using the user’s secret key.
As noted by Naor (see Section 6 of [BF03]), any IBE scheme can readily be converted into

a public key signature scheme (by interpreting user identities of IBE as messages for a regular
signature scheme and defining the signature of a message to be the secret key associated with the
corresponding identity). Similarly, any HIBE scheme can be transformed into a HIBS scheme.
This was sketched by Gentry and Silverberg [GS02], giving the construction for a HIBS scheme.
We note that the converse (transforming HIBS into HIBE) is not known to be possible. Related
to these are Forward-secure Signature (FSS) schemes, which modify a secret key over time
(while the public key remains the same) such that exposure of the secret key at a certain time
period does not allow forgery of signatures from previous time periods. (See [BM99] for an exact
definition of FSS.) In [CHK03] it is proved that HIBE implies Forward-secure Encryption (FSE)
(which is defined as FSS with signing replaced by encryption). Using the same construction it
is easy to show that HIBS implies FSS (as explicitly noted in [CHYC04]). More precisely, a
HIBS scheme of depth d can be used to construct a forward-secure scheme providing security for
2d time steps (using a tree-based construction). The converse (transforming FSS into HIBS) is
not known to be possible. Thus, relating HIBE, HIBS, AOS, and FSS, we obtain the following
hierarchy:

HIBE⇒ HIBS⇔ AOS⇒ FSS
In particular, given a secure HIBE scheme, we can construct a secure AOS scheme and given a
secure AOS scheme, it is easy to obtain a secure FSS scheme.

4.1 Definition of HIBS

We recall the syntax of Hierarchical Identity-based Signature (HIBS) schemes and the appropri-
ate notions of unforgeability. Let HIBS.IDSpace be any set of identities (typically {0, 1}∗). For an
integer n ≥ 0, a username at the level n in the tree (called hierarchical identity of depth n) is an
(ordered) n-tuple of identities written as I[1..n] = (I1, I2, . . . , In) with each Ii ∈ HIBS.IDSpace.
The special case of n = 0 is the root identity, denoted as I[1..0] or ε. Further on, we will
refer to strings from HIBS.IDSpace as identities and to n-tuples of them as hierarchical identi-
ties. We use the symbol v to denote the prefix relation over the set of hierarchical identities:
for a given hierarchical identity I[1..n] = (I1, I2, . . . , In), any hierarchical identity from the set
{I[1..i], 0 ≤ i ≤ n} is its prefix. Note that the root identity ε is a prefix of any other hierarchical
identity.
A HIBS scheme HIBS with respect to the message space HIBS.MSpace and the identity space

HIBS.IDSpace is made up of four algorithms: a setup algorithm HIBS.Setup, a key delegation
algorithm HIBS.KeyDel, a signature algorithm HIBS.Sign, and a verification algorithm HIBS.Vfy.

• HIBS.Setup (the setup algorithm) takes as input a security parameter and generates the
master public key HIBS.pk of the scheme and the secret key of the root identity HIBS.SK[ε]
(the master secret key).

• HIBS.KeyDel (the key delegation algorithm) takes as input a hierarchical identity I[1..n] =
(I1, . . . , In), its associated secret key HIBS.SK[I[1..n]], and an identity In+1 ∈ HIBS.IDSpace

of its child. It returns a secret key HIBS.SK[I[1..n+1]] associated with the new hierarchical
identity I[1..n+ 1] = (I1, . . . , In, In+1).

• HIBS.Sign (the signing algorithm) takes a hierarchical identity I[1..n], the associated secret
key HIBS.SK[I[1..n]], and a message M ∈ HIBS.MSpace. It computes a signature on this

11

message M with respect to this identity.

• HIBS.Vfy (the verification algorithm) takes the master public key HIBS.pk, a hierarchical
identity I[1..n], a message M , and a signature sig. It outputs true or false depending
on whether sig is a valid signature of M signed by hierarchical identity I[1..n].

All these algorithms can be randomized. All of them must be polynomial-time in the security
parameter. Moreover, it is required that for all pairs (HIBS.pk,HIBS.SK[ε]) of master public and
secret keys output by HIBS.Setup, and for all messagesM ∈ HIBS.MSpace, hierarchical identities
I[1..n] and associated secret keys HIBS.SK[I[1..n]] (recursively generated from the secret key
HIBS.SK[ε] using the HIBS.KeyDel algorithm),

HIBS.Vfy(HIBS.pk, I[1..n],HIBS.Sign(HIBS.SK[I[1..n]], I[1..n]),M),M) = true.

Unforgeability of the HIBS scheme HIBS under chosen-plaintext attacks is formally defined as
follows:

Definition 4.1 [HIBS-UF-CMA] Let HIBS = (HIBS.Setup,HIBS.KeyDel,HIBS.Sign,HIBS.Vfy)
be a hierarchical identity-based signature scheme, let k be the security parameter, and let A be
an adversary. We consider the experiment:

Experiment Exphibs-uf-cma
HIBS ,A (k)

IDSet ← ∅ ; (HIBS.pk,HIBS.SK[ε])← HIBS.Setup(1k)
(I[1..n],M , sig)← ACorrupt(·),Sign(·,·)(HIBS.pk)
if HIBS.Vfy(I[1..n],M , sig) = true

and ∀ J [1..j] v I[1..n] : J [1..j] 6∈ IDSet
and (I[1..n],M) 6∈ MSGSet

then return 1 else return 0

Oracle Corrupt(I[1..n])

IDSet ← IDSet ∪ {I[1..n]}
return Extract(I[1..n])

Oracle Sign(I[1..n],M)

MSGSet ← MSGSet ∪ {(I[1..n],M)}
HIBS.SK[I[1..n]]← Extract(I[1..n])
return HIBS.Sign(HIBS.SK[I[1..n]], I[1..n],M)

Oracle Extract(I[1..i]) // defined recursively

if i = 0 return HIBS.SK[ε]
else if HIBS.SK[I[1..i]] = defined

then return HIBS.SK[I[1..i]]
else HIBS.SK[I[1..i]]← HIBS.KeyDel(HIBS.pk, I[1..i− 1],Extract(I[1..i− 1]), Ii)

return HIBS.SK[I[1..i]]

The hibs-uf-cma-advantage of an adversary A in breaking the security of the scheme HIBS is
defined as

Advhibs-uf-cma
HIBS ,A (k) = Pr[Exphibs-uf-cma

HIBS ,A (k) = 1] ,

and HIBS is said to be existentially unforgeable under chosen message attacks (hibs-uf-cma-
secure) if the above advantage is a negligible function in k for all polynomial-time adversaries
A. Note that the adversary is given access to the two oracles Corrupt(·) and Sign(·, ·), not to
the oracle Extract(·). The latter one is only used internally by the experiment.

4.2 Constructing AOS from HIBS

The idea of the reduction is as follows. We set AOS.MSpace = HIBS.IDSpace and associate an
AOS message (M1, . . . ,Mn) of length n with the hierarchical identity I[1..n] = (M1, . . . ,Mn) of
depth n. We then define the signature of this message as the secret key HIBS.SK[I[1..n]] of the
hierarchical identity I[1..n].

12

Given the above analogy between signatures of messages and secret keys of hierarchical
identities, we construct an AOS scheme given a HIBS scheme as follows. Appending to a given
signature in AOS is done using key delegation in HIBS . The verification of an AOS signature
HIBS.SK[I[1..n]] is done by signing a random message M ∈ HIBS.MSpace under the secret key
HIBS.SK[I[1..n]] and verifying that the resulting signature is valid.

Construction 4.2 Given a HIBS schemeHIBS = (HIBS.Setup,HIBS.KeyDel,HIBS.Sign,HIBS.Vfy),
we construct an AOS scheme AOS = (AOS.Setup,AOS.Append,AOS.Vfy) as follows:

• AOS.Setup: Run the HIBS.Setup algorithm to generate a pair (HIBS.pk,HIBS.SK[ε]) and
output (HIBS.pk,HIBS.SK[ε]) as the key pair for AOS . HIBS.SK[ε] is the signature of an
empty message ε.

• AOS.Append: Given the public key AOS.pk, signature Sig[M [1..n]] of the message M [1..n],
and the message Mn to append, the AOS signature on Sig[M [1..n + 1]] is returned as
Sig[M [1..n+ 1]]← HIBS.KeyDel(HIBS.pk, Sig[M [1..n]],Mn+1).

• AOS.Vfy: Given a public key AOS.pk, a message M [1..n], and a signature Sig[I[1..n]], the
verification algorithm first signs a random message M ∈ HIBS.MSpace under hierarchical
identity M [1..n] using Sig[I[1..n]] as a secret key of M [1..n] in HIBS :

sig← HIBS.Sign(I[1..n], Sig[I[1..n]],M).

Then it outputs the result of the HIBS verification HIBS.Vfy(HIBS.pk, I[1..n],M , sig).

Theorem 4.3 If the HIBS scheme HIBS = (HIBS.Setup,HIBS.KeyDel,HIBS.Sign,HIBS.Vfy) is
hibs-uf-cma secure, then the AOS scheme from Construction 4.2 is aos-uf-cma secure.

We omit the proof of Theorem 4.3.

4.3 Constructing HIBS from AOS

A naive approach to building a HIBS scheme HIBS from an AOS scheme AOS is to first append
all the identities and then to append a message to be signed. That is, both the identity space
HIBS.IDSpace and the message space HIBS.MSpace of HIBS are subsets of the message space
AOS.MSpace of the AOS scheme. The secret key of a hierarchical identity I[1..n] in this HIBS
scheme is exactly the AOS signature of I[1..n] viewed as the AOS message. Delegation in HIBS
is equivalent to appending in AOS. Signing a message M with respect to a hierarchical identity
I[1..n] is defined by appending M to the AOS signature of I[1..n].
This naive construction is secure only if HIBS.IDSpace and HIBS.MSpace are disjoint subsets

of AOS.MSpace. If there is some identity J which itself is a valid message, the security of the
HIBS scheme can be broken even if its corresponding AOS is secure. An adversary could query
the HIBS signing oracle with a message J and some hierarchical identity I[1..n]. The resulting
signature equals the secret key for the hierarchical identity (I1, . . . , In, J), which violates the
security of the HIBS scheme.
Our idea to overcome this problem is to insert a unique identifier between identities and

messages. Let AOS = (AOS.Setup,AOS.Append,AOS.Vfy) be a secure AOS scheme with message
space AOS.MSpace. Let HIBS.IDSpace and HIBS.MSpace be arbitrary subsets of AOS.MSpace

such that there is some symbol ∆ from the AOS message space which is not a valid identity
for the HIBS scheme (∆ can still be in the HIBS message space). Then we can construct
a secure HIBS scheme HIBS = (HIBS.Setup,HIBS.KeyDel,HIBS.Sign,HIBS.Vfy) with identity
space HIBS.IDSpace and message space HIBS.MSpace as follows:

13

Construction 4.4 HIBS = (HIBS.Setup,HIBS.KeyDel,HIBS.Sign,HIBS.Vfy):

• HIBS.Setup(1k): Run the AOS.Setup(1k) algorithm to generate a pair (AOS.pk, Sig[ε]) and
output it as the master public/private key pair for HIBS .

• HIBS.KeyDel(HIBS.pk,HIBS.SK[I[1..n]], In+1): Given the master public key, the secret key
of hierarchical identity I[1..n], and a new identity In+1, the delegation algorithm interprets
HIBS.SK[I[1..n]] as an AOS signature of I[1..n]. It appends to the signature a message
In+1 and outputs the resulting signature as the secret key of I[1..n+ 1]:

HIBS.SK[I[1..n+ 1]]← AOS.Append(HIBS.pk,HIBS.SK[I[1..n]], In).

• HIBS.Sign(HIBS.pk,HIBS.SK[In],M): Given a master public key, a secret key of the hi-
erarchical identity I[1..n], and a message M , the sign algorithm for HIBS interprets
HIBS.SK[I[1..n]] as an AOS signature of I[1..n]. It appends a symbol ∆ to HIBS.SK[I[1..n]]
and then appends a message M to the resulting AOS signature to get the final signature
sig:

sig← AOS.Append(HIBS.pk,AOS.Append(HIBS.pk,HIBS.SK[I[1..n]],∆),M).

• HIBS.Vfy(HIBS.pk, I[1..n],M , sig): Given a master public key, a hierarchical identity
I[1..n], a signature sig, and a message M , the verification algorithm for HIBS returns the
output of

AOS.Vfy(HIBS.pk, (I1, . . . , In,∆,M), sig).

Theorem 4.5 If the AOS scheme AOS = (AOS.Setup,AOS.Append,AOS.Vfy) is aos-uf-cma
secure, then the HIBS scheme HIBS from Construction 4.4 is hibs-uf-cma secure.

Proof: Given an adversary A attacking the hibs-uf-cma security of the HIBS scheme with suc-
cess probability Advhibs-uf-cma

HIBS ,A (k), we can construct an adversary B that attacks the aos-uf-cma
security of AOS with success probability

Advaos-uf-cma
AOS ,B (k) ≥ Advhibs-uf-cma

HIBS ,A (k).

As in Definition 2.1, adversary B gets input a public key AOS.pk for the AOS scheme. B runs
the HIBS-UF-CMA experiment against HIBS as well as an instance of adversary A. B gives as
input to A the master public key HIBS.pk = AOS.pk. Adversary B answers the oracle queries of
adversary A using the oracle AOSSign(·) for AOS as follows:

Corrupt(I[1..n]):

HIBS.SK[I[1..n]]
$← AOSSign(I[1..n])

return HIBS.SK[I[1..n]] to A.

Sign(I[1..n],M):

sig0
$← AOSSign(I[1..n])

sig1
$← AOS.Append(AOS.pk, sig0,∆)

sig2
$← AOS.Append(AOS.pk, sig1,M)

return sig2 to A.

14

Eventually, adversary A halts and outputs the triple (I∗[1..n],M ∗, sig∗), which consists of a
target hierarchical identity I∗[1..n], a message M ∗, and a forged signature sig∗. Adversary B
then outputs sig∗ as the forgery of message M ∗[1..n+2] = (I∗1 , . . . , I

∗
n,∆,M

∗). This completes
the description of the simulation.

It is easy to see that B perfectly simulates the two oracles Corrupt(·) and Sign(·, ·); that is,
B’s responses on A’s queries are distributed exactly as in the true HIBS-UF-CMA experiment.
Note that if sig∗ is a valid signature of M ∗ with respect to the hierarchical identity I∗[1..n],
then sig∗ is also a valid AOS signature on the message M ∗[1..n+ 2].

The fact that ∆ 6∈ HIBS.IDSpace ensures that the message M ∗[1..n+ 2] was never queried by B
to the oracle AOSSign(·) when simulating the oracle Corrupt(·). Furthermore, if A’s forgery
is valid, no prefix of the hierarchical identity I∗[1..n] can be queried to the oracle Corrupt(·)
by A and hence no prefix of M ∗[1..n+ 2] was queried to the oracle AOSSign(·) by B. Also, A
is not allowed to call oracle Sign(·) for the tuple (I∗[1..n],M ∗). This ensures that no prefix of
M∗[1..n + 2] was ever queried to oracle AOSSign(·) when simulating oracle Sign(·, ·). Thus,
whenever A outputs a valid forgery, B wins AOS-UF-CMA game against AOS .

The above reduction uses the existence of a symbol ∆ such that ∆ ∈ AOS.MSpace but
∆ 6∈ HIBS.IDSpace. For the case that HIBS.IDSpace = AOS.MSpace, there is an alternative way
of constructing a HIBS from an AOS scheme. We sketch the construction for the interesting
binary case—that is, for HIBS.IDSpace = AOS.MSpace = HIBS.MSpace = {0, 1}.
The HIBS secret key of the hierarchical identity I[1..n] is then defined to be the AOS signa-

ture of (I1, 0, I2, 0, . . . , In, 0). The HIBS signature of M under the hierarchical identity I[1..n] is
defined as the AOS signature of (I1, 0, . . . , In, 0,M, 1). The security proof of the resulting HIBS
scheme is a natural modification of the proof of Theorem 4.5.

4.4 Discussion

Given the equivalence between the AOS and HIBS schemes, one can easily transform all our
constructions in Section 3 into provably secure HIBS schemes. Note that since the reductions
are tight, an efficient AOS implies an efficient HIBS and vice-versa. The advantages of this
indirect approach to designing HIBS are twofold. First, AOS is a much simpler primitive than
HIBS; security proofs for AOS schemes are easier to carry out than those for HIBS. Second,
some of the tricks used in efficient AOS schemes (for example, the hash-tree based construction)
could yield more efficient HIBS constructions.
The certificate-based AOS scheme (Section 3.1) thus naturally transforms a public-key signa-

ture scheme into a HIBS scheme. The certificate-based approach to constructing HIBS schemes
was mentioned in [GS02] although this fact appears not to be widely known [CHYC04] and we
were not able to find any further studies of certificate-based HIBS in the literature. To the best
of our knowledge, we are the first to prove security for this scheme. In contrast to identity-
based encryption (which is believed to be hard to implement without use of bilinear maps) such
HIBS schemes do not utilize pairings, thereby yielding efficient implementations. Moreover, the
security proofs are done without using the Random Oracle model.

15

5 Applications

In this section, we describe two practical scenarios in which append-only signatures are directly
applicable.

5.1 Wide-area Routing Protocol Security

An important application of AOS is in the construction of secure routing protocols for the
Internet. The Border Gateway Protocol (BGP), which is the primary routing protocol used
today in the Internet, has some well-known security weaknesses which require cryptographic
solutions. While there have been many proposals for securing BGP in the past [KLS00, HPS04,
SRS+04, WKvO05], each must develop its own cryptographic constructions due to the lack
of any primitive designed specifically for this application. In the discussion below, we briefly
describe Internet routing and explain how our primitive is useful for ensuring one of the most
important security requirements in BGP, namely path authenticity. Indeed, providing a sufficient
cryptographic primitive for this problem led us to design AOS.

We begin with BGP, the Internet’s primary routing protocol, which is tasked with advertising
paths from one network to all other networks. Each network, named by an Autonomous System
(AS) number, uses BGP to advertise the sets of IP addresses it is responsible for to its neighbor
ASes. Each AS, upon receiving such advertisements, appends itself to the list of ASes on the
forwarding path and repropagates the advertisement if it adheres to some local policies. When
an AS receives two path advertisements for the same IP address space, it must make a decision
as to which it wishes to use for its purposes and also to propagate to neighbors. Finally, once
the set of routes have converged, these routes are used for packet forwarding; for each packet,
the router looks up the destination IP address and forwards it to the neighbor AS as given by
the BGP path advertisement.

Unfortunately, this path advertisement process also allows for any intermediate AS to hijack
the process by changing advertisements arbitrarily. For example, if an AS truncates the AS path
in an advertisement, then its neighbors will receive an advertisement shorter than the true path
(typically causing them to prefer it). In the worst case, an AS can use this attack to convince
its neighbors to forward all their traffic to it, which it could then modify or drop at will. (There
are several other classes of attacks against BGP, but path modification and truncation are the
most significant.)

Append-only Signatures can easily be applied to solve this problem as follows. Suppose that
an AS R0 wishes to announce routes for some IP prefix using the above path advertisement
process. It first generates an AOS public-private key pair, distributes the public key AOS.pk

throughout the network (this can be done with the help of a trusted authority that certifies
public keys of ASes as in [KLS00, HPS04, WKvO05]) and to every neighboring AS Ri1 , sends
the usual BGP information relating to the single-node path (R0) along with the AOS signature
AOS.Append(AOS.pk, Sig[ε], Ri1). In order to continue the advertisement process, Ri1 sends to
each of its own neighbors Ri2 a BGP announcement containing the path (R0, Ri1) and the
AOS signature AOS.Append(AOS.pk, Sig[Ri1], Ri2). In other words, R0 appends the label of its
neighbor Ri1 into the AOS signature chain and Ri1 further appends the label of Ri2 into it

3. The

3This may seem a bit unintuitive because each AS appends the “succeeding” AS’s identity, rather than its
own, into the AOS signature. However, this is important to ensure security of the protocol; otherwise, a malicious
AS can make a path arbitrarily long by appending random ASes into the path before it finally appends itself.
The only mischief it can perform in the above protocol is to create an arbitrary loop starting and ending at itself;
this can be easily detected by any downstream AS.

16

advertisement process continues in this manner until all ASes in the network receive information
about a path to R0. Each recipient can verify the validity of the announced path by verifying
the corresponding AOS signature using the public key AOS.pk. If the AOS scheme is secure
according to our definition (defn. 2.1), then all that a malicious AS can do is append the label
of one of its neighbors into the AOS signature chain (since each neighbor Ri can check that the
AS it receives an advertisement from was the last to be appended before Ri

4).

In practice, the number of path advertisements received by any AS to a given source AS R0

is extremely small: as observed in real routing data [HPS04], the odds that an AS receives more
than 15 path advertisements coming from the same source are about 1 in a 1000. This allows
the use of efficient m-time signature schemes (as in Section 3.5), with m equal to 15, in order
to implement the AOS scheme in the above protocol and obtain a reasonable level of security.

5.2 Secure Delegation of Resources

Fu et al. describe the SHARP system for distributed resource management, in which users wish
to share their resources with each other in a fully decentralized system [FCC+03]. Central to
this system is the notion of a claim—users are issued claims on resources which they present
upon resource use. These claims are signed such that they can be verified to be valid by third
parties. Furthermore, users can delegate their claims to others, restricting them in the process.
In this setting, the resource owner wishes to place some restrictions on how her resources are
delegated. Their setting allows for a direct application of AOS. Quite simply, each resource
provider, when initially issuing a resource claim, appends to an AOS the amount of resources to
be given. Upon delegation, subsequent parties simply append to the signature what fraction of
the existing claim is to be delegated. Upon claiming resources, the holder of the sub-delegated
claim cannot use more than the fraction of the original resources indicated by the AOS signature.

6 Final Remarks and Open Problems

6.1 Finalization of AOS signature

An interesting feature of append-only signature schemes which might be needed by some appli-
cations is the ability to “finalize” the signature, that is, to modify the signature of a message in
the way which prohibits any further appending. The general solution to this problem is to use a
special symbol Θ (from the message space) to denote the end of the message. When one wants
to finalize the signature of some message, he should append Θ to the signature. Messages that
contain symbol Θ in the middle of the message (not as the last symbol) are therefore considered
to be invalid.

6.2 Restricted AOS

In AOS, anyone can append and verify signatures. In certain scenarios, however, one may want
to restrict the ability to append messages to a limited group of users. Still, anyone should be
able to verify the signatures. We call this extension of AOS Restricted Append-Only Signatures
(RAOS).

4The security of this solution relies on the assumption that AS-to-AS links are authenticated in some standard
manner, for example using Message Authentication Codes (MACs) or existing infrastructure like IPSec, as done
in [HPS04, WKvO05]. Also, the AOS-based approach is not resilient to collusions between multiple malicious
ASes, as is the case with all proposals for securing BGP that we are aware of.

17

Let U be a group of users allowed to perform the append operation. We assume that all
members of the group U are given some key K of an (symmetric) encryption scheme ENC =
(ENC,DEC).

We modify a given AOS scheme to get a RAOS scheme as follows: Define the RAOS signature
of a message M [1..n] = (M1, . . . ,Mn) as the tuple

Sig′ = (ENCK (Sig(M [1..n])), Sig(M1, . . . ,Mn,Θ)),

where Θ is the finalization symbol from the last paragraph. In order to append the message
Mn+1 to a given RAOS signature on M [1..n], a member of the group U decrypts the first
part of the RAOS signature with her key K to obtain Sig(M [1..n]). She then appends Mn+1

using the original AOS.Append algorithm. Finally, she outputs the new RAOS signature tuple by
encrypting Sig(M [1..n+1]) and appending Θ to Sig(M [1..n+1]). Note that without knowledge
of the key K , the AOS signature Sig(M [1..n]) remains secret and hence appending cannot be
performed. Public verification is done by verifying if the second part of the RAOS signature is
a valid AOS signature on the message (M1, . . . ,Mn,Θ).

6.3 Shorter AOS signatures

Given that wide-area routing protocols propagate a large number of messages, compact signa-
tures are desirable. Thus we raise an open problem of whether it is possible to build an AOS
scheme with constant signature length (in both message length and maximal message length).
This problem is equivalent to building a HIBS scheme where secret keys of the users have con-
stant length (in the depth of the given user in the hierarchy and in the maximal depth of the
hierarchy).

So far the best we can get is the construction from Section 3.3 which provides an AOS
scheme that can sign messages of length up to n symbols with signatures of length O(

√
n). This

construction translates to a HIBS scheme with n-level deep hierarchy, where the secret key of
each user has length O(

√
n).

Acknowledgments

We would like to thank Mihir Bellare (for suggesting an improvement to the proof of Theo-
rem 3.1) and Daniele Micciancio (for some useful insight about the definition of AOS). Thanks
also to the anonymous reviewers for pointing out errors and suggesting improvements.

References

[AR00] Michel Abdalla and Leonid Reyzin. A new forward-secure digital signature scheme.
In Tatsuaki Okamoto, editor, Advances in Cryptology – ASIACRYPT 2000, volume
1976 of Lecture Notes in Computer Science, pages 116–129, Kyoto, Japan, Decem-
ber 3–7, 2000. Springer-Verlag, Berlin, Germany.

[BB04] Dan Boneh and Xavier Boyen. Efficient selective-id secure identity based encryption
without random oracles. In Christian Cachin and Jan Camenisch, editors, Advances
in Cryptology – EUROCRYPT 2004, volume 3027 of Lecture Notes in Computer
Science, pages 223–238, Interlaken, Switzerland, May 2–6, 2004. Springer-Verlag,
Berlin, Germany.

18

[BBG05] D. Boneh, X. Boyen, and E.-J. Goh. Hierarchical identity based encryption with
constant size ciphertext. In Ronald Cramer, editor, Advances in Cryptology – EU-
ROCRYPT 2005, Lecture Notes in Computer Science, page ???? Springer-Verlag,
Berlin, Germany, May 22–26, 2005.

[BF03] Dan Boneh and Matthew K. Franklin. Identity based encryption from the Weil
pairing. SIAM Journal on Computing, 32(3):586–615, 2003.

[BGG94] Mihir Bellare, Oded Goldreich, and Shafi Goldwasser. Incremental cryptography -
the case of hashing and signing. In Yvo Desmedt, editor, Advances in Cryptology –
CRYPTO’94, pages 57–66. Springer-Verlag, Berlin, Germany, August 21–25, 1994.

[BGG95] Mihir Bellare, Oded Goldreich, and Shafi Goldwasser. Incremental cryptography
and application to virus protection. In 27th Annual ACM Symposium on Theory of
Computing, pages 57–66, Las Vegas, Nevada, USA, May 29 – June 1, 1995. ACM
Press.

[BGLS03] Dan Boneh, Craig Gentry, Ben Lynn, and Hovav Shacham. Aggregate and verifiably
encrypted signatures from bilinear maps. In Eli Biham, editor, Advances in Cryp-
tology – EUROCRYPT 2003, volume 2656 of Lecture Notes in Computer Science,
pages 416–432, Warsaw, Poland, May 4–8, 2003. Springer-Verlag, Berlin, Germany.

[BM96] Daniel Bleichenbacher and Ueli M. Maurer. Optimal tree-based one-time digital
signature schemes. In STACS ’96: Proceedings of the 13th Annual Symposium on
Theoretical Aspects of Computer Science, pages 363–374. Springer-Verlag, 1996.

[BM99] Mihir Bellare and Sara Miner. A forward-secure digital signature scheme. In
Michael J. Wiener, editor, Advances in Cryptology – CRYPTO’99, volume 1666
of Lecture Notes in Computer Science, pages 431–448, Santa Barbara, CA, USA,
August 15–19, 1999. Springer-Verlag, Berlin, Germany.

[CHK03] Ran Canetti, Shai Halevi, and Jonathan Katz. A forward-secure public-key encryp-
tion scheme. In Eli Biham, editor, Advances in Cryptology – EUROCRYPT 2003,
volume 2656 of Lecture Notes in Computer Science, pages 255–271, Warsaw, Poland,
May 4–8, 2003. Springer-Verlag, Berlin, Germany.

[CHYC04] S. S. M. Chow, L. C. K. Hui, S. M. Yiu, and K. P. Chow. Secure hierarchical identity
based signature and its application. In Proceedings of ICICS 2004, pages 480–494,
2004.

[FCC+03] Yun Fu, Jeffrey Chase, Brent Chun, Stephen Schwab, and Amin Vahdat. SHARP: an
architecture for secure resource peering. In Proceedings of the 19th ACM Symposium
on Operating System Principles (SOSP), Bolton Landing, NY, October 2003.

[Gol01] Oded Goldreich. Foundations of Cryptography: Basic Tools, volume 1. Cambridge
University Press, Cambridge, UK, 2001.

[Gol04] Oded Goldreich. Foundations of Cryptography: Basic Applications, volume 2. Cam-
bridge University Press, Cambridge, UK, 2004.

[GS02] C. Gentry and A. Silverberg. Hierarchical id-based cryptography. In Yuliang Zheng,
editor, Advances in Cryptology – ASIACRYPT 2002, volume 2501 of Lecture Notes

19

in Computer Science, pages 548–566, Queenstown, New Zealand, December 1–5,
2002. Springer-Verlag, Berlin, Germany.

[HM02] A. Hevia and D. Micciancio. The provable security of graph-based one-time signa-
tures and extensions to algebraic signature schemes. In Yuliang Zheng, editor, Ad-
vances in Cryptology – ASIACRYPT 2002, volume 2501 of Lecture Notes in Com-
puter Science, pages 379 – 396, Queenstown, New Zealand, December 1–5, 2002.
Springer-Verlag, Berlin, Germany.

[HPS04] Yih-Chun Hu, Adrian Perrig, and Marvin Sirbu. SPV: secure path vector routing for
securing BGP. In Proceedings of the ACM SIGCOMM Conference, pages 179–192,
2004.

[JMSW02] Robert Johnson, David Molnar, Dawn Xiaodong Song, and David Wagner. Homo-
morphic signature schemes. In Bart Preneel, editor, Topics in Cryptology – CT-
RSA 2002, volume 2271 of Lecture Notes in Computer Science, pages 244–262, San
Jose, CA, USA, February 18–22, 2002. Springer-Verlag, Berlin, Germany.

[KLS00] Stephen Kent, Charles Lynn, and Karen Seo. Secure border gateway protocol (S-
BGP). IEEE Journal on Selected Areas in Communications, 18(4):582–592, 2000.

[LMRS04] Anna Lysyanskaya, Silvio Micali, Leonid Reyzin, and Hovav Shacham. Sequential
aggregate signatures from trapdoor permutations. In Christian Cachin and Jan
Camenisch, editors, Advances in Cryptology – EUROCRYPT 2004, volume 3027 of
Lecture Notes in Computer Science, pages 74–90, Interlaken, Switzerland, May 2–6,
2004. Springer-Verlag, Berlin, Germany.

[Mer88] Ralph C. Merkle. A digital signature based on a conventional encryption function.
In Carl Pomerance, editor, Advances in Cryptology – CRYPTO’87, volume 293 of
Lecture Notes in Computer Science, pages 369–378, Santa Barbara, CA, USA, Au-
gust 16–20, 1988. Springer-Verlag, Berlin, Germany.

[MOR01] Silvio Micali, Kazuo Ohta, and Leonid Reyzin. Accountable-subgroup multisigna-
tures. In ACM CCS 01: 8th Conference on Computer and Communications Security,
pages 245–254, Philadelphia, PA, USA, November 5–8, 2001. ACM Press.

[MR02] Silvio Micali and Ronald L. Rivest. Transitive signature schemes. In Bart Pre-
neel, editor, Topics in Cryptology – CT-RSA 2002, volume 2271 of Lecture Notes
in Computer Science, pages 236–243, San Jose, CA, USA, February 18–22, 2002.
Springer-Verlag, Berlin, Germany.

[Rom90] John Rompel. One-way functions are necessary and sufficient for secure signatures.
In 22nd Annual ACM Symposium on Theory of Computing, pages 387–394, Balti-
more, Maryland, USA, May 14–16, 1990. ACM Press.

[RR02] Leonid Reyzin and Natan Reyzin. Better than biba: Short one-time signatures with
fast signing and verifying. In Proceedings of 7th Australasian Conference ACSIP,
2002.

[Sha85] Adi Shamir. Identity-based cryptosystems and signature schemes. In G. R. Blakley
and David Chaum, editors, Advances in Cryptology – CRYPTO’84, volume 196 of
Lecture Notes in Computer Science, pages 47–53, Santa Barbara, CA, USA, Au-
gust 19–23, 1985. Springer-Verlag, Berlin, Germany.

20

[SRS+04] Lakshminarayanan Subramanian, Volker Roth, Ion Stoica, Scott Shenker, and
Randy Katz. Listen and whisper: Security mechanisms for bgp. In Proceedings
of USENIX/ACM NSDI, 2004.

[WKvO05] Tao Wan, Evangelos Kranakis, and P.C. van Oorschot. Pretty secure BGP (psBGP).
In Proceedings of ISOC NDSS, 2005.

A Public Key Signature Schemes

A public key signature scheme SGN = (SGN.G, SGN.S, SGN.V) is a collection of three algorithms:
a key generation algorithm SGN.G, a signing algorithm SGN.S, and a verification algorithm
SGN.V. These algorithms must be polynomial time in the security parameter and should have
the following input/output specification:

• SGN.G takes as input the security parameter 1k and outputs a secret key/public key pair
(sk , pk). The public key also includes some system parameters like the description of the
message space SGN.MSpace.

• SGN.S takes as input a message M ∈ SGN.MSpace and produces a string sig which is
called a signature of a message M .

• SGN.V takes as input a public key pk , a message M and a signature sig and returns either
true or false.

The verification algorithm must accept all signatures produced by the signing algorithm, namely
the following should hold for every (sk , pk) produced by SGN.G(k), every messageM ∈ SGN.MSpace

and every choice of random coins:

SGN.Vpk (M, SGN.Ssk (M)) = true.

Next we define unforgeability under chosen message attacks (sig-uf-cma) for a signature scheme.

Definition A.1 [SIG-UF-CMA] Let SGN be a signature scheme, let k be a security parameter,
and let A be an adversary. We consider the following experiment:

Experiment Exp
sig-uf-cma
SGN ,A

(1k)

MSGSet ← ∅;
(sk , pk)

$← SGN.G(1k)

(M, sig)
$← ASign(·)(pk)

if SGN.V(M, sig) = true

and M not in MSGSet , return 1
else return 0

Oracle Sign(M)

sig
$← SGN.Ssk (M)

MSGSet ← MSGSet ∪ {M}
return sig

The sig-uf-cma advantage of an adversary A in breaking security of the scheme SGN is defined
as

Adv
sig-uf-cma
SGN ,A

(k) = Pr[Expsig-uf-cma
SGN ,A

(k) = 1].

Signature scheme SGN is said to be unforgeable under chosen message attacks (sig-uf-cma) if
the above advantage is negligible function in k for all polynomial-time adversaries A.

21

B Proof of Theorem 3.1

We show that for any adversary A against AOS1, there exists an adversary B against SGN
running in about the same time as A such that

Advaos-uf-cma
AOS1,A (k) ≤ s ·Advsig-uf-cma

SGN ,B
(k).

The reduction factor s is the upper bound on the number of messages M for which Sig[M] is

defined by the Extract(·) oracle in the experiment Expforge-cma
AOS1,A (k). This bound should be

known by B before she runs the simulation of A and the bound should hold for any choice of
the public key, for any random coins of A and for any oracle responses. The number s could be
also upper bounded by qe · d, where qe is the maximal number of AOSSign(·) queries made by
A and d is the maximal length of the queries.
Now we proceed to the construction of adversary B who attacks the unforgeability of the

public key signature scheme SGN . In the sig-uf-cma experiment the challenger runs a key
generation algorithm SGN.G(1k) to get a pair of keys (sk , pk) and gives pk as input to B as well
as an access to the SGN.Ssk (·) oracle.
During its execution B will construct a set T that at each moment of time will contain

all the messages M for which Sig[M] is already defined by Extract(·). This set plays the
same role as in the original aos-uf-cma experiment. The only difference is that now, for each
message M [1..n] ∈ T , we will keep not only a signature Sig[M [1..n]] but also a pair of elements
(skM [1..n], pkM [1..n]). The latter will correspond to the secret key/public key pair for SGN
generated by Extract(·) oracle when computing the signature for M [1..n]. The pseudocode
for the adversary B is given below:

Adversary B(1k, pk):
Pick guess

$← [1, . . . , s]; ctr ← 1; T ← ∅
if guess = 1 then pk ε ← pk ; sk ε ← false

else (sk ε, pk ε)
$← SGN.G(1k)

Set AOS.pk← pk ε and define Sig[ε]← {sk ε}
Add ε to T
Run A(1k,AOS.pk) and answer its AOSSign(·) queries as follows:

AOSSign(M [1..n]) :

Sig
$← Extract(M [1..n]); parse Sig as {pkM [1], sig1, . . . , pkM [1..n], sign, skM [1..n]}

if skM [1..n] 6= false then return Sig to A else halt B ; return Failure.

Extract(M [1..n]) : // defined recursively
if M [1..n] ∈ T then return Sig[M [1..n]]

else Sig
$← Extract(M [1..n− 1]); parse Sig as {pkM [1], sig1, . . . , pkM [n−1], sign−1, skM [n−1]}

ctr ← ctr + 1
if guess = ctr then M+[1..n+]←M [1..n]; set (skM+[1..n+], pkM+[1..n+])← (false, pk)
else (skM [1..n], pkM [1..n])

$← SGN.G(1k)

if skM [1..n−1] 6= false then sign
$← SGN.SskM [1..n−1]

(mn, pkM [1..n])

else get sign by querying (mn, pk) to the SGN.Ssk (·) oracle.
Define Sig[M [1..n]] = {pkM [1], sig1, . . . , pkM [1..n], sign, skM [1..n]}
Add M [1..n] to T

22

return Sig[M [1..n]].

Eventually A halts and outputs (M ∗[1..n], Sig∗), where Sig∗ = {pk∗1, sig∗1, . . . , pk∗n, sig∗n, sk∗n}.
Find the maximal index n∗ ∈ [0 . . . n] such that

M∗[1..n∗] ∈ T and s.t. pk∗i = pkM∗[1..i] for all i = 1 . . . n
∗.

if M∗[1..n∗] 6=M+[1..n+] then return Failure

else if n∗ = n then pick a pair (m′, pk ′) which was not queried to SGN.Ssk (·) ;
compute sig ′

$← SGN.Ssk∗n
(m′, pk ′) ; output {(m′, pk ′), sig ′}

if n∗ < n then output {(m∗
n∗+1, pk

∗
n∗+1), sig

∗
n∗+1}.

At a high level, the adversary B works as follows. Before running A, it randomly selects an
integer guess

$← [1..s] which corresponds to an index of some message that will be queried to
the Extract(·) oracle. Note that all messages are selected by A, so B does not know in advance
the actual message M+[1..n+]. (It is defined only at the time when guess-th new message is
queried to Extract(·).) Next, B runs A and simulates the AOSSign(·) oracle. B follows the
protocol of the original oracle to compute signatures of all the messages that do not contain the
guessed one as a prefix. For the guessed message M+[1..n+], the adversary B sets pkM+[1..n+] to
be equal to the input public key pk and skM+[1..n+] ← false. Therefore, if A queries the guessed
message to the AOSSign oracle, B declares Failure since she does not know the secret key sk
which corresponds to pk . However, B still can correctly answer all the AOSSign queries that
contain M+[1..n+] as a prefix by using the SGN.Ssk (·) oracle that is given by the Expsig-uf-cma

experiment. Also, since Extract(·) is recursive, any message is added to T only after all its
prefixes are already in T .

Let A terminate and output a forgery of a message M ∗[1..n]. B assumes that the forgery
is valid and that her guessed message M+[1..n+] is equal to the prefix M ∗[1..n∗] of the forged
message. M∗[1..n∗] is the longest prefix of M ∗[1..n] such that all the public keys pk ∗1, . . . pk

∗
n+

from the signature Sig∗ match the stored public keys pkM∗[1], . . . pkM∗[1..n+]. In this case, B can
easily make a forgery for SGN : if n+ < n∗ then sig∗

n++1 is a forgery for SGN , otherwise (if
n+ = n∗) the secret key skn∗ should match the unknown secret key sk .

Next we bound the advantage of B. There are several events in the experiment we must
consider.

FAIL : B does output Failure.

Without loss of generality, we can assume that if B does not fail then A always outputs a forgery
Sig∗ for some message M ∗[1..n] and that no prefix of M ∗[1..n] was queried to AOSSign(·) (if
this does not hold, A automatically loses). The second event is defined as

FORGE : the forgery of A is valid,

that is, AOS.Vfy(AOS.pk, Sig∗,M∗[1..n]) = 1. This event is defined only if B does not fail.
Finally, we consider random variables M+[1..n+] and M∗[1..n∗]. The former random variable,
M+[1..n+], corresponds to a message, whose signature was defined at the time when B sets
guess = ctr. If no such query was made, we set M+[1..n+] ← ⊥. The latter random variable,
M∗[1..n∗], corresponds to the “good” prefix of the forgery M ∗[1..n] returned by A. It is defined
only if B does not fail. We define GUESS to be the event that B guesses the message A outputs
a forgery on:

GUESS :M+[1..n+] =M∗[1..n∗].

23

We observe that if B does not fail, A wins and the guess is correct; B then outputs a valid
forgery of the signature scheme SGN . Therefore

Adv
sig-uf-cma
SGN ,B

(k) ≥ Pr[¬FAIL ∧ FORGE ∧ GUESS]. (2)

The analysis is based on the following two claims. The first claim establishes that if B guessed
the right value forM+[1..n+] and B does not output failure then the simulation of A is perfect
and we have

Claim B.1 Advaos-uf-cma
AOS1,A (k) = Pr [FORGE | ¬FAIL ∧ GUESS] .

The second claim shows that the probability of a correct guess is exactly 1/s:

Claim B.2 Pr [¬FAIL ∧ GUESS] = 1
s
.

We will settle the two claims later. Combining Claims B.1 and B.2 with Eqn. (2) we get

Adv
sig-uf-cma
SGN ,B

(k) ≥ Pr[FORGE ∧ ¬FAIL ∧ GUESS]

= Pr [FORGE | ¬FAIL ∧ GUESS] · Pr[¬FAIL ∧ GUESS]

=
1

s
·Advaos-uf-cma

AOS1,A (k),

which completes the proof of the theorem.

Proof of of Claim B.1: We will show that in an AOSSign(·) query M [1..n] made by A, B
declares Failure if M [1..n] =M+[1..n+] and otherwise returns a signature which is distributed
identically to the original aos-uf-cma experiment against AOS1. This implies

Pr [FORGE | ¬FAIL] = Advaos-uf-cma
AOS1,A (k). (3)

Since the output of A is independent from the choice of guess, then the above equality holds
also assuming M+[1..n+] =M∗[1..n∗]:

Pr[FORGE | ¬FAIL ∧ GUESS] = Advaos-uf-cma
AOS1,A (k).

It is left to show (3): that if B does not return Failure then the input of A is identically
distributed to the original aos-uf-cma experiment.

First, from the construction of B we see that the claim is true for messages that do not con-
tain the guessed message M+[1..n+] as a prefix. In this case, the Extract oracle uses the
AOS.Append algorithm of AOS1 to append the signatures and therefore all signatures are dis-
tributed identically to the ones constructed by the Extract oracle in the original aos-uf-cma
experiment.

In the case when A queriesM [1..n] =M+[1..n+] to the AOSSign(·) oracle, the AOSSign(·) or-
acle calls Extract(M+[1..n+]) to get Sig[M+[1..n+]]. The signature Sig[M+[1..n+]] returned
by the Extract oracle to has a form {pk 1, sig1, . . . , pkn+ , sign+ , skn+}, where skn+ = false

and B declares Failure on such a query.
We are left to show what happens when the AOSSign query M [1..n] contains M+[1..n+] as a
prefix and n+ < n. We know that signatures of all the prefixes of length smaller that n+ are cor-
rectly distributed. The recursive Extract oracle constructs Sig[M [1..n+]] and appends it using
the SGN.Ssk (·) oracle. The signature Sig[M [1..n+]] has the form {pk1, sig1, . . . , pkn+ , sign+ , skn+},

24

where pkn+ = pk and skn+ = false. The input public key pk was generated by SGN.G(1k) and
thus pkn+ is correctly distributed. To append Sig[M [1..n+]] withMn++1, Extract(·) computes
(skn++1, pkn++1) ← SGN.G(1k), queries sigsk (Mn++1, pkn++1) and sets Sig[M [1..n

+ + 1]] ←
{pk1, sig1, . . . , pkn++1, sign++1, skn++1}. This signature is correctly distributed and all the fol-
lowing signatures are constructed by appending this one using AOS.Append.

Proof of of Claim B.2: Let A terminate and output a forgery for M ∗[1..n]. Without loss
of generality we can assume that no prefix of M ∗[1..n] is contained in MSGSet . Thus the
target message M ∗[1..n∗] must be different from all the AOSSign queries made by A. The
previous claim established that A’s AOSSign queries are totally independent from the choice
of M+[1..n+].

The index of the guessed message was uniformly chosen from [1..s]. If there exists an AOSSign

query equal to M+[1..n+], then B declares Failure; otherwise A outputs message M ∗[1..n∗]
which must be different from all the AOSSign queries. Therefore the probability that B does
not fail and that M∗[1..n∗] =M+[1..n+] is exactly 1/s.

C Proof of Theorem 3.2

In this appendix we will establish the following: for any adversary A against aos-uf-cma security
of AOS3, there exists an adversary B (against collision-resistance of G0, G1 and H), C (against
one-wayness of G0 and G1) and D (against pseudo-randomness of G) all running in about the
same time as A such that

Advaos-uf-cma
AOS3,A (k) ≤

∑

S∈{H,G0,G1}

Advcr
S,B(k) + 3·2d

∑

S∈{G0,G1}

Adv
1-way
S,C (k) + 2d ·Advprg

G,D(k)

 .

Here Advxxx
S,B(k) denotes the advantage of a (polynomially bounded) adversary B attacking the

xxx security of the primitive S, where xxx can be cr (collision resistance), 1-way (one-wayness),
or prg (pseudorandomness). For a formal definition we refer the reader to the textbooks of
Goldreich [Gol01, Gol04]).

We denote the original aos-uf-cma experiment played by A as Exp. Consider an arbitrary
adversary A that is run in Exp. At the key-generation stage the challenger picks a random
secret key key(ε), computes the values of key(·) on all the nodes in the graph T , and gives a
public key key(ε̃) to A. The adversary outputs a forgery (M ∗[1..t], Sig∗) and with probabil-
ity Advaos-uf-cma

AOS3,A (k), A’s forgery is valid. Let u∗ = 〈M∗
1 , . . . ,M

∗
t 〉 and parse Sig∗ as the set

{key∗(x) | x ∈ {u∗} ∪ Comp(u∗)}. Let Desc(u∗) be the set {u∗} ∪ Comp(u∗) including all their
(lower) descendants in the graph T . Then the signature on u∗ defines key∗(·) on the set Desc(u∗).
We define the event

FORGE : The forgery of A in experiment Exp is valid,

i.e. key∗(ε̃) = key(ε̃). We define KEYS as the event that key∗(x) = key(x) on all x ∈ Desc(u∗)
in experiment Exp. Then we have

Advaos-uf-cma
AOS3,A (k) = Pr[FORGE]

= Pr[FORGE ∧ KEYS]
︸ ︷︷ ︸

p1

+Pr[FORGE ∧ ¬KEYS]
︸ ︷︷ ︸

p2

.

25

Intuitively, we are going to show that in the first case there is an efficient attack on the pseu-
dorandomness of G or the one-wayness of G0 or G1 and in the second case one can break
collision-resistance of H,G0 or G1.
We will bound p1 and p2 in turn. First we bound p2. Note that ¬E means that there exists

some x ∈ Desc(u∗) such that key∗(x) 6= key(x). Hence FORGE ∧ ¬KEYS means that among the
possible descendants x ∈ Desc(u∗) satisfying key∗(x) 6= key(x), there must exist some x together
with one of its children y, such that key∗(x) 6= key(x) but key∗(y) = key(y) (since we require
key∗(ε̃) = key(ε̃)).
Consider the following adversary B (attacking the collision resistance of G0, G1 or H) that

runs the aos-uf-cma experiment for A. B picks a random secret key key(ε), recursively computes
key(x) for all nodes x in the graph T , and returns the public key key(ε̃) to A. The input of
A is distributed identically to the experiment Expaos-uf-cma

AOS3,A (k). Thus with probability p2, A
outputs a valid forgery {key∗(x) | x ∈ {u∗} ∪ Comp(u∗)} for some node u∗ ∈ UT such that
there exists a node x ∈ T (x is some descendant x of {u∗} ∪ Comp(u∗)) and its child y such
that key∗(x) 6= key(x) but key∗(y) = key(y). Such an x can be identified by B in the same
time as verifying a signature. If x ∈ UT then {key∗(x), key(x)} is a collision either for G0 or
G1 (Gi(key

∗(x)) = Gi(key(x)) for some i ∈ {0, 1}). Otherwise let x′ be another parent of y,
then H(key∗(x), key∗(x′)) = H(key(x), key(x′)) and {(key∗(x), key∗(x′)), (key(x), key(x′))} is a
collision for H(·, ·). Therefore

p2 ≤ Advcr
H,B(k) +Adv

cr
G0,B(k) +Adv

cr
G1,B(k).

We now proceed to bound p1. First consider a single adversary C0 participating in the oneway
experiments for both G0 and G1 simultaneously. The adversary C0 will run A and in the case
A successfully forges AOS3, she will win in either one of the experiments (that is, finding a
preimage for G0 or G1 of a given input value C). Second, consider an adversary C1 participating
in the same oneway experiment and that only slightly differs from the description of adversary
C0. The adversary C1 will be used to bound probability p1.
Finally, using a hybrid argument, we will connect the two adversaries by showing that the

views of adversaryA when run by C0 and C1 in the execution of the experiment are computational
indistinguishable assuming G is a pseudorandom generator.
We describe the two adversaries C0 and C1 as follows:

Adversary Ci(1k , c):
key(ε)

$← {0, 1}k and define key(·) recursively on all the descendants.
Pick a random node u+ = 〈M+

1 , . . . ,M
+
n 〉

$← UT \ {ε} ∪ {d-th level of LT}.
if i = 0 then redefine key(u+)← c else do nothing
Run A(1k , key(ε̃)) and answer all the Sign(M [1..t]) queries made by A as follows:
if (M [1..t] =M+[1..t]) and (t < n) then return abort.
else set u = 〈M1, . . . ,Mt〉 ; return Sig = {key(x) | x ∈ {u} ∪ Comp(u)}.

Eventually A terminates and outputs a forgery Sig∗ for some message M ∗[1..t].
Denote 〈M∗

1 , . . . ,M
∗
t 〉 as u∗ ; parse Sig∗ as {key∗(x) | x ∈ u∗ ∪ Comp(u∗)}.

if M∗[1..t] =M+[1..n− 1] then return key∗(u∗)
else return abort.

For i ∈ {0, 1} denote by Expi the simultaneous oneway experiment when run under adversary
Ci. We define the two events

ABORTCi
:Adversary Ci aborts in experiment Expi

KEYSCi
:key∗(x) = key(x) for all x ∈ Desc(u∗) in experiment Expi

26

Furthermore, we define the two probabilities

qi = Pr[KEYSCi
∧ ¬ABORTCi

]

in experiment Expi. Intuitively, in the remainder of the proof we will show that the value q0

is related to the onewayness of G0 and G1, that q1 can be lower bounded using p1, and that
|q0 − q1| is small.
Consider the experiment Exp0. Assuming C0 does not abort, u+ is a child of u∗ and hence we

have G
M+

n
(key∗(u∗)) = key(u+) = c if the event KEYSC0 happens. Hence adversary C0 outputs

key∗(u∗) which is valid preimage of G
M+

n
(c):

q0 ≤ Adv1-way
G0,C0

(k) + Adv1-way
G1,C0

(k)

in experiment Exp0. We will now lower bound probability q1 in experiment Exp1.

Claim C.1 q1 ≥ p1/(3 · 2d).

We rewrite q1 as
q1 = Pr [KEYSC1 | ¬ABORTC1] · Pr[¬ABORTC1].

The event ¬ABORTC1 in Exp1 happens if and only if the right value for u
+ was guessed by C1,

i.e. if u+ is a child of u∗. Hence, assuming C1 does not abort, the view of A in experiment
Exp1 is identically distributed to the view of A the experiment Exp. Hence with probability at
least p1, A outputs a valid forgery (u∗, Sig∗) such that key∗(x) = key(x) on all descendants
x ∈ Desc(u∗) in Exp1:

Pr [KEYSC1 | ¬ABORTC1] ≥ Pr[FORGE ∧ KEYS] = p1

Since the choice of u+ in the experiment Exp1 is totally independent from the inputs of A (and
u+ is chosen randomly from the set of 3 · 2d − 2 nodes), we have

Pr[¬ABORTC1] = 1/(3 · 2d − 2) ≥ 1/(3 · 2d).

This completes the proof of the claim.
For i ∈ {0, 1} define Viewi to be the view of adversary A in experiment Expi. The following

lemma establishes that the views of A in the experiments Exp0 and Exp1 are computationally
indistinguishable.

Lemma C.2 A cannot distinguish between the two distributions View0 and View1 better than
with probability 2d ·Advprg

G,D(k) for some adversary D running in about the same time as A.

We will prove the lemma later. As an implication of Lemma C.2 we get that |q0 − q1| ≤
2d ·Advprg

G,D(k). Thus

p1 ≤ 3 · 2d · q1
≤ 3 · 2d(q0 + 2d ·Advprg

G,D(k))

≤ 3 · 2d(Adv1-way
G0,C

(k) +Adv1-way
G1,C

(k)) + 2d ·Advprg
G,D(k))

Combining the bounds on p1 and p2 we complete the proof of the theorem:

p1 + p2 ≤
∑

S∈{H,G0,G1}

Advcr
S,B(k) + 3 · 2d

∑

S∈{G0,G1}

Adv
1-way
S,C (k) + 2d ·Advprg

G,D(k)

 .

27

Proof of of Lemma C.2: Each of the experiments Exp0 and Exp1 is completely determined
by the values of key(·) on the following subset of nodes R ⊂ T :

R = {〈M+
1 , . . . ,M

+
j 〉 | j = 1, . . . , n} ∪ {〈M+

1 , . . . ,M
+
j−1,¬M+

j 〉 | j = 1, . . . , n}

In Exp1, key(ε) is chosen at random and the keys on the rest of R is generated by iterating G(·).
On the other hand, in Exp0 the values of key(·) on R are defined in the same way except for
key(〈M+

1 , . . . ,M
+
n 〉), which is replaced by the challenge string for the onewayness experiment.

Our goal is to show that from adversary A’s view, these two experiments are computational
indistinguishable.

We define a sequence of n hybrid adversaries C1[1], . . . , C1[n] as follows: Let C1[1] = C1 and
the i-th adversary C1[i] behaves like C1 except that it assigns random keys key(·) on the nodes
{〈M+

1 , . . . ,M
+
j 〉, 〈M+

1 , . . . ,M
+
j−1, ¬M+

j 〉 | j = 1, . . . , i} and uses G(·) to compute key(·) on the
rest of the nodes. The only difference between adversaries C1[i] and C1[i+ 1] is that in the first
case key(〈M+

1 , . . . ,M
+
i 〉), key(〈M+

1 , . . . ,¬M+
i 〉) are pseudorandom and in the second case they

are perfectly random. Let Exp1[i] be the experiment when run under adversary C1[i] and let
View1[i] be the random variable describing the view of adversary A when run in experiment
Exp1[i]. Then, for each 1 ≤ i ≤ n − 1, A cannot distinguish between View1[i] and View1[i + 1]
any better than with probability Advprg

G,D(k) for some adversary D who runs in the time needed
to run A.
Next, consider a new adversary C ′0 which is defined as C0, just key(〈M+

1 , . . . ,M
+
n 〉) is replaced by

a random string from {0, 1}k . Analogously define Exp′0 and View′
0. Since G(·) is a pseudorandom

generator, A cannot distinguish between the View0 and View′
0 any better than with probability

Adv
prg
G,D(k).

Analogous to the first sequence of hybrid adversaries, consider a sequence of adversaries C ′0[1], . . . ,
C′0[n]. Here C′0[1] = C′0 and the i-th adversary C ′0[i] is identical to C1[i], except the value
key(〈M+

1 , . . . ,M
+
n 〉) is replaced by a truly random string. Again define Exp′0[i] and View′

0[i]
as above. A similar argument shows that A cannot distinguish between View′

0[i] and View′
0[i+1]

any better than with probability Advprg
G,D(k). Finally, the experiments Exp′0[n] and Exp1[n] are

identical so are View′
0[n] and View1[n]. This establishes a sequence of hybrids from View0 to

View1:

View0 ≈ View′
0 ≡ View′

0[1] ≈ . . . ≈ View′
0[n] ≡ View1[n] ≈ . . . ≈ View1[1] ≡ View1,

where ≈ means that the distributions of the two random variables are computational indistin-
guishable and ≡ means they are identical. A cannot distinguish between any consecutive pair of
the views any better than with probability Advprg

G,D(k), therefore total probability that A will
distinguish between View0 and View1 is no more than

2n ·Advprg
G,D(k) ≤ 2d ·Adv

prg
G,D(k).

D AOS with short key size

In this section we review the hybrid HIBE scheme from Boneh, Boyen and Goh (see Section
4 of [BBG05]) (BBG −HIBE) achieving short private keys. By the results from Section 4 we

28

know that a HIBE scheme implies an AOS scheme. Motivated by this reduction, we present
a concrete AOS scheme (called AOS2) based on BBG −HIBE . In presenting the concrete
scheme, we are able to make some (straightforward) efficiency improvements over the generic
reduction by making the AOS verification algorithm deterministic (instead of probabilistic).
The main intention of this section is to demonstrate that AOS (and hence also HIBS) can

be carried out with secret key size of order “square root of the length of the signed message”.
We briefly review the necessary facts about bilinear maps and bilinear groups. Let G1 and

G2 be groups with the following properties.

• G1 is an additive groups of prime order q.

• G1 has generator P .

• There is a bilinear map e : G1 ×G1 → G2.

We have stipulated that our groups should have a bilinear map e : G1 ×G1 → G2. This should
satisfy the conditions below.

Bilinear: For all U, V ∈ G1, a, b ∈ Z, e(aU, bV) = e(U, V)ab

Non-degenerate: e(P, P) 6= 1G2

We say that G1 is a bilinear group if there exists a group G2 with |G2| = |G1| = q and a bilinear
map e satisfying the conditions above; moreover, the group operations in G1 and G2 and e must
be efficiently computable.
Let G1 be a bilinear group. We want to build an AOS scheme for messages of length at

most d. For simplicity assume that d has an integer root; that is, l =
√
d. Any message

M [1..n] = (M1, . . . ,Mn) of length n ≤ d can be represented in matrix form as

M [1..n] =

M1 M2 . . . Ml

Ml+1 Ml+2 . . . M2l
...

...
. . .

...
M(l−1)l+1 M(l−1)l+2 . . . Ml2

=

M1,1 M1,2 . . . M1,l

M2,1 M2,2 . . . M2,l
...

...
. . .

...
Ml,1 Ml,2 . . . Ml,l

.

We denote the induced index mapping as π : {1, . . . , d} → {1, . . . , l} × {1, . . . , l} with π(n) =
(n1, n2). Here n1 is called the row index and n2 the column index.
We may now describe AOS2 = (AOS.Setup,AOS.Append,AOS.Vfy) giving its constituting

algorithms.

• AOS.Setup(1k): Pick two random generators P,Q ∈ G1 and a random element α ∈ Zq.
Next, pick random elements G1, . . . , Gl and H1, . . . , Hl ∈ G1. The public key consists of

AOS.pk = (P,G1, . . . , Gl, H1, . . . , Hl, e(αP,Q)).

The root key Sig[ε] is αQ.

• AOS.Append: Let (n1, n2) = π(n). For a message M [1..n] the signature is defined as

Sig[M [1..n]] = (αQ+

n1−1∑

i=1

ri(Gi +

l∑

j=1

Mi,jHj) + r′n1
(Gn1 +

n2∑

j=1

Mn1,jHj),

r1P, . . . , rn1−1P, r
′
n1
P, r′n1

Hn2+1, . . . , r
′
n1
Hl) ∈ G

l+1+n1−n2
1 ,

29

where r1, . . . , rn1−1, as well as r
′
n1
are random elements from Zq. We now describe the

append operation. Given the public key AOS.pk, a signature Sig[M [1..n− 1]], and a new
symbol Mn, we want to output a valid signature of the message M [1..n].

For the append process we have to distinguish between two cases:
Case 1: π(n− 1) = (n1, n2− 1) (namely n and n− 1 have the same row index). Then the
signature on message M [1..n− 1] has the form

(

αQ+

n1−1∑

i=1

ri(Gi +
l∑

j=1

Mi,jHj) + rn1(Gn1 +

n2−1∑

j=1

Mn1,jHj),

r1P, . . . , rn1P, rn1Hn2 , . . . , rn1Hl

)

= (A,A1, . . . , An1 , Bn2 , . . . , Bl).

Pick a random r ∈ Zq and output the signature Sig[M [1..n]] as

(

A+Mn1,n2Bn2+r(Gn1+

n2∑

j=1

Mn1,jHj), A1, . . . , An1−1, An1+rP,Bn2+1+rHn2+1, . . . , Bl+rHl

)

.

It is easy to verify that the resulting signature is of the right form with r′n1
= rn1 + r.

Case 2: If π(n−1) = (n1−1, l) (the row indexes of n and n−1 differ). Then the signature
on message M [1..n− 1] has the form

(

αQ+

n1∑

i=1

ri(Gi +
l∑

j=1

Mi,jHj), r1P, . . . , rn1−1P
)

= (A,A1, . . . , An1−1).

In this case we have π(n) = (n1, 1) and to generate a signature for the message M [1..n]
chose a random r ∈ Zq and compute Sig[M [1..n]] as

(

A+ r(Mn1,1H1 +Gn1), A1, . . . , An1−1, rP, rH2, . . . , rHl

)

.

• AOS.Vfy. Given a signature Sig[M [1..n]] and a message M [1..n], verification is carried out
as follows: Verify if

e(Sig[M [1..n]], P) = e(αP,Q) ·
n1−1∏

i=1

(e(riP,Gi +

l∑

j=1

Mi,jHj)) · e(r′n1
P,Gn1 +

n2∑

j=1

Mn1,jHj)

The length of the signature of AOS2 grows linearly with the square root of the length of the
message. Security is proved with respect to the l+1-Bilinear Diffie-Hellman Exponent (BDHE)
assumption. (See [BBG05] for an exact definition.)

Theorem D.1 Suppose the computational l + 1-BHDE assumptions holds in the group G1.
Then the AOS2 scheme is selective message aos-uf-cma secure.

Here selective message aos-uf-cma security is defined similar to Definition 2.1. The difference
is that in the security experiment, the adversary has to commit to the message she is going to
forge the signature for before the public/secret keys are issued and the public key is given to
her. In the random oracle model, the scheme can be modified to get a full unforgeable AOS

30

scheme. However, the security reduction is not tight and only allows for signatures on messages
of constant length. Again, we refer the reader to [BBG05] for more details.
The proof of the theorem follows that of the BBG −HIBE scheme from [BBG05] and is

omitted here. We note that since we are dealing with signatures instead of encryption, we
can prove security of our scheme with respect to a computational assumption (rather than a
decisional assumption as the original BBG −HIBE scheme).

31

	Introduction
	Append-only Signatures
	Efficient AOS Constructions
	Certificate-Based Append-Only Signatures
	Shorter Signatures via Aggregation
	Compact Signatures via the Boneh-Goh-Boyen HIBE
	AOS via Hash Trees
	AOS via One-time Signatures

	Relations between HIBS and AOS
	Definition of HIBS
	Constructing AOS from HIBS
	Constructing HIBS from AOS
	Discussion

	Applications
	Wide-area Routing Protocol Security
	Secure Delegation of Resources

	Final Remarks and Open Problems
	Finalization of AOS signature
	Restricted AOS
	Shorter AOS signatures

	Public Key Signature Schemes
	Proof of Theorem 3.1
	Proof of Theorem 3.2
	AOS with short key size

