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ABSTRACT
A major staple of layer 2 has long been the combination of
flood-and-learn Ethernet switches with some variant of the
Spanning Tree Protocol. However, STP has significant short-
comings – chiefly, that it throws away network capacity by
removing links, and that it can be relatively slow to recon-
verge after topology changes. In recent years, attempts to
rectify these shortcomings have been made by either making
L2 look more like L3 (notably TRILL and SPB, which both in-
corporate L3-like routing) or by replacing L2 switches with
“L3 switching” hardware and extending IP all the way to
the host. In this paper, we examine an alternate point in
the L2 design space, which is simple (in that it is a sin-
gle data plane mechanism with no separate control plane),
converges quickly, delivers packets during convergence, uti-
lizes all available links, and can be extended to support both
equal-cost multipath and efficient multicast.

CCS Concepts
•Networks→ Network protocol design; Link-layer proto-
cols;

Keywords
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1 Introduction
Layer 2 was originally developed to provide local connectiv-
ity while requiring little configuration. This plug-and-play
property ensures that when new hosts arrive (or move), there
is no need to (re)configure the host or manually (re)configure
switches with new routing state. This is in contrast to IP (L3)
where one must assign an IP address to a newly arriving host,
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and either its address or the routing tables must be updated
when it moves to a new subnet. Even though L3 has devel-
oped various plug-and-play features of its own (e.g., DHCP),
L2 has traditionally played an important role in situations
where the initial configuration, or ongoing reconfiguration
due to mobility, would be burdensome. As a result, L2 re-
mains widely used in enterprise networks and a variety of
special cases such as temporary networks for events, wireless
or virtual server networks with a high degree of host mobil-
ity, and small networks without dedicated support staff.

Because it must seamlessly cope with newly arrived hosts,
a traditional L2 switch uses flooding to reach hosts for which
it does not already have forwarding state. When a new host
sends traffic, the switches “learn” how to reach the sender
by recording the port on which its packets arrived. To make
this flood-and-learn approach work, the network maintains
a spanning tree, which removes links from the network in
order to make looping impossible. The lack of loops plays
two essential roles: (i) it enables flooding (otherwise loop-
ing packets would bring down the network) and (ii) it makes
learning simple (because there is only one path to each host).

This approach, first developed by Mark Kempf and Radia
Perlman at DEC in the early 80s [20,29], is the bedrock upon
which much of modern networking has been built. Remark-
ably, it has persisted through major changes in networking
technologies (e.g., dramatic increases in speeds, the death of
multiple access media) and remains a classic case of elegant
design. However, users now demand better performance and
availability from their networks, and this approach is widely
seen as having two important drawbacks:
• The use of a spanning tree reduces the bisection band-

width of the network to that of a single link, no matter
what the physical topology is.
• When a link on the spanning tree fails, the entire tree

must be reconstructed. While modern spanning tree pro-
tocol variants are vastly improved over the earlier in-
carnations, we continue to hear anecdotal reports that
spanning tree convergence time is a recurring problem
in practice, particularly in high-performance settings.1

1In fact, the network administrators at our own institution
have restricted the network to a tree topology so that they
can turn off STP and avoid its large delays.

497

http://dx.doi.org/10.1145/2934872.2934877


In this paper we present a new approach to L2, called the
All conneXion Engine or AXE, that retains the original goal
of plug-and-play, but can use all network links (and can even
support ECMP for multipath) while providing extremely fast
recovery from failures (only packets already on the wire or
in the queue destined for the failed link are lost when a link
goes down).2 AXE is not a panacea, in that it does not na-
tively support fine-grained traffic engineering, though (as we
discuss later) such designs can be implemented on top. How-
ever, we see AXE as being a fairly general replacement in
current Ethernets and other high-bandwidth networks where
traffic engineering for local delivery is less important.

We recognize that there is a vast body of related work
in this area, which we elaborate in Section 6, but now we
merely note that none of the other designs combine AXE’s
features of plug-and-play, near-instantaneous recovery from
failures, and ability to work on general topologies. We also
recognize that redesigning L2 is not the most pressing prob-
lem in networking. However, L2 is perhaps the most widely
used form of routing (in terms of the number of installations,
not the number of hosts) and its performance is now seen as
a growing problem (as evinced by the number of modifica-
tions and extensions vendors now deploy). What we present
here is the first substantial rethinking of L2 that not only im-
proves its performance (in terms of available bandwidth and
failure recovery), but also entirely removes the need for any
control plane at this layer; this is in stark contrast to STP and
to many of the redesigns discussed in Section 6.

In the next section, we describe AXE’s design, starting
with a simplified clean design with provable correctness prop-
erties under ideal conditions, and moving on to a practical
version that is more robust under non-ideal conditions. We
then describe an implementation of AXE in P4 (Section 3)
and extensions to support multicast (Section 4) before eval-
uating AXE’s performance through simulation in Section 5.
We end with a discussion of related work in Section 6.

2 Design
Traditional L2 involves two separate processes: (i) creating
a tree (via STP or its variants) and (ii) forwarding packets
along this tree via a flood-and-learn approach. In AXE, we
only use a single mechanism – flood-and-learn – in which
flooded packets are prevented from looping not with a span-
ning tree, but with the use of switch-based packet deduplica-
tion. Packet deduplication enables one to safely flood packets
on any topology because duplicate packets are detected and
dropped by the AXE switches instead of following an end-
less loop. This allows AXE to utilize all network links, and
removes the need for a complicated failure recovery process
(like STP) when links go down.

But these advantages come at the cost of a more subtle
learning process. Without a spanning tree, packets can ar-
rive along more than one path, so AXE must actively choose
which of these options to learn. Furthermore, in the presence
of failures, some paths may become obsolete – necessitating

2AXE was first introduced in workshop form [25]. Here we
present an extended treatment.

they be “unlearned” to make way for better ones.
To give a clearer sense of the ideas underlying AXE, we

first present a clean version of the algorithm in Section 2.1
that has provable properties under ideal conditions. We then
present a more practical version in Sections 2.2-2.4 that bet-
ter addresses the non-ideal conditions found in real deploy-
ments. Both designs use the standard Ethernet src and dst ad-
dresses and additionally employ an AXE packet header with
four more fields: the “learnable” flag L, the “flooded” flag F,
a hopcount HC, and a nonce (used by the deduplication algo-
rithm). We make no strong claims as to the appropriate size
of the HC and nonce fields, but for the sake of rough esti-
mation, note that if the entire additional header were 32 bits,
one could allocate two bits for the flags, six for HC (allowing
up to 64 hops), and the remaining 24 for the nonce. In order
to maintain compatibility with unmodified hosts, we expect
this header to be applied to packets at the first hop switch
(which might be a software virtual switch if AXE were to
be deployed in, e.g., a virtualized datacenter). In addition,
switches enforce a maximal HC (defined by the operator) to
prevent unlimited looping in worst-case scenarios.

As we discuss more fully in Section 2.3, each switch uses a
deduplication filter to detect (and then drop) duplicate pack-
ets based on the triplet <src, nonce, L>. While there are a
number of ways to construct such a filter, here we use a hash-
table-like data structure that can experience false negatives
but no false positives (i.e., no non-duplicates are dropped by
the filter, but occasional duplicates may be forwarded).

The forwarding entries in a switch’s learning table are in-
dexed by an Ethernet address and contain the arrival port
and the HC of the packet from which this state was learned
(which are the port one would use to reach the host with the
given address and the number of hops to reach it if a packet
followed the reverse path).

Finally, note that AXE pushes the envelope for fast fail-
ure response, but does not make any innovation in the realm
of fast failure detection. Instead, AXE can leverage any ex-
isting detection techniques, from higher level protocols like
CFM [11] and BFD [19] to hardware-based techniques with
failure detection times on the order of microseconds [7].

2.1 Clean Algorithm
Recall that the traditional Ethernet approach involves flood-
ing and learning: (i) a packet is flooded when it arrives at a
switch with no forwarding state for its destination address,
and (ii) an arriving packet from a host establishes a forward-
ing entry toward that host. The approach can be so simple
due to the presence of a nontrivial control plane algorithm –
STP – which prunes the effective topology to a tree. Because
it operates on a general topology without any control plane
protocol, the clean version of AXE is slightly more compli-
cated and can be summarized as follows:

Header insertion and host discovery: When a packet
arrives without an AXE header, a header is attached with
HC=1, the L flag set, and the F flag unset. If there is no for-
warding state for the source, an entry is created and the F
flag is set. The first step merely initializes the header; the
second step is how switches learn about their attached hosts

498



(and the subsequent flood informs the rest of the network
how to reach this host).

Flooding: When a packet with the F flag set arrives, it is
flooded out all other ports. When a packet with the F flag
unset arrives at a switch with no forwarding state for its des-
tination or for which the forwarding state is invalid (e.g., its
link has failed), the F flag is set, and the packet is flooded.
The flooded packets have the L flag set only if the flood orig-
inated at the first hop (i.e., HC=1). The flooding behavior is
similar to traditional learning algorithms, with the addition
of the explicit flooding and learning flags.

Learning and unlearning: Switches learn how to reach
the source from flooded packets with the L flag set, and un-
learn (erase) state for the destination whenever they receive
a flood packet with the L flag unset. While traditional learn-
ing approaches learn how to reach the source host from all
incoming packets, in AXE we can only reliably learn from
packets flooded from the first hop (since packets flooded
from elsewhere might have taken circuitous paths, as we dis-
cuss below). Moreover, when switches learn from flooded
packets, they choose the incoming copy that has the smallest
HC. When a flooded packet arrives with the L flag unset, it
indicates that there is a problem reaching the destination (be-
cause the flood originated somewhere besides the first hop,
as might happen with a failed link); this is why switches un-
learn forwarding state when such packets arrive.

Wandering packets: When the HC of a nonflooded packet
reaches the limit, the packet is flooded (with the F flag set and
the L flag unset) and local state for the destination is erased.
If the forwarding state has somehow created a loop, erasing
the state locally ensures that the loop is broken. Flooding the
packet (with the L flag unset) will cause all forwarding state
to the destination host to be erased (so the next packet sent
by that host will be flooded from the first hop, and the correct
forwarding state learned).

Algorithm 1 shows pseudocode of this clean algorithm,
which processes a single packet p at a time and consults the
learning table Table by calling a Lookup() method with the
desired Ethernet address. Lookup() returns False if there is
no table entry corresponding to the address. The operation
Table.Learn() inserts the appropriate updated state in the ta-
ble, and Table.Unlearn() removes the state. IsPortDown() re-
turns True if the output port passed to it is unavailable (e.g.,
the link has failed). The IsDuplicate value (obtained from the
deduplication filter) indicates whether the switch has already
seen a copy of that packet (as duplicates of a packet may ar-
rive on multiple ports if the topology contains cycles). Out-
put() sends a packet via a specified port, and Flood() sends a
packet via all ports except the ingress port (p.InPort).

We define ideal conditions as when all hosts are station-
ary, there are no packet losses, there are no link or router
failures, there are no deduplication mistakes (our mechanism
ensures that there are no false positives, so this requires that
there also be no false negatives), the maximal HC is larger
than the diameter of the network, and no switch mistakenly
thinks a host is directly attached when it is not. Under such
conditions, we can make the following two statements about
the behavior of the algorithm which hold regardless of the

1: if p has no AXE header then
2: Add AXE header
3: p.Nonce← NextNonce()
4: p.HC← 1, p.L← True
5: if ! Table.Lookup(p.EthSrc) then
6: p.F ← True
7: Table.Learn(p.EthSrc, p.InPort, p.HC)
8: else
9: p.F ← False

10: end if
11: else
12: p.HC← p.HC+1
13: end if
14:
15: if p.F then
16: if ! IsDuplicate then
17: Flood(p)
18: end if
19:
20: if ! p.L then
21: Table.Unlearn(p.EthDst)
22: else if ! IsDuplicate then
23: Table.Learn(p.EthSrc, p.InPort, p.HC)
24: else if ! Table.Lookup(p.EthSrc) then
25: Table.Learn(p.EthSrc, p.InPort, p.HC)
26: else if IsPortDown(Table.Lookup(p.EthSrc)) then
27: Table.Learn(p.EthSrc, p.InPort, p.HC)
28: else if Table.Lookup(p.EthSrc).HC ≥ p.HC then
29: Table.Learn(p.EthSrc, p.InPort, p.HC)
30: end if
31: else if ! Table.Lookup(p.EthDst) then
32: p.F ← True, p.L← (HC = 1)
33: Flood(p)
34: Output(p, p.InPort)
35: else if IsPortDown(Table.Lookup(p.EthDst)) then
36: p.F ← True, p.L← (HC = 1)
37: Flood(p)
38: Output(p, p.InPort)
39: else if p.HC > MAX_HOP_COUNT then
40: p.F ← True, p.L← False
41: Flood(p)
42: Output(p, p.InPort)
43: Table.Unlearn(p.EthDst)
44: else
45: Out put(p,Table.Lookup(p.EthDst).Port)
46: end if

Algorithm 1: The clean algorithm.

forwarding state currently in the switches (subject to the con-
straint about directly attached hosts):

Delivery: Packets will be delivered to their destination.
This holds because there are only three possibilities: (i) the
packet reaches the intended host following existing forward-
ing state (i.e., it is not flooded), (ii) the packet reaches a
switch without valid forwarding state and then is flooded and
therefore reaches its destination, or (iii) the hopcount even-
tually reaches the maximal value causing the packet to be
flooded which therefore reaches its destination. What cannot
happen under our assumption of ideal conditions is that for-
warding state on a switch delivers the packet to the wrong
host (except in the case of flooding, where it reaches all
hosts). Note that this line of reasoning guarantees delivery
even in the non-ideal case when there are link/router fail-
ures, as long as they do not cause a partition during the time
the packet and its copies are in flight.2

Eventually shortest path routes: Forwarding state that
is learned from undisturbed floods will route packets along
shortest paths. We call a flood from source A with L set an
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undisturbed flood if no unlearning of A takes place during the
time the flood has packets in transit (e.g., due to other floods
with destination A which have the L flag unset). New state is
installed if and only if packets have both the F and L flags
set, which happens only when packets are flooded from the
first-hop switch. When intermediate switches receive multi-
ple copies of the same packet, the ultimate state reflects the
lowest hopcount needed to travel from the first-hop switch to
the intermediate switch. Thus, as long as no state is erased
during this process, when all copies of the flood from source
A with L set have left the network, every switch ends up with
state pointing toward an output port that has a shortest path
to the destination. Any packet following this state will take
a shortest path to A. The reason we require the flood to be
undisturbed is because if some state is erased during the orig-
inal flood, then the last state written may not point towards a
shortest path (i.e., the state that was erased may have been the
state reflecting the shortest path). Note that this statement of
correctness applies even if two or more flooded packets from
A with the L flag set were in flight at the same time: since
the network topology is constant under ideal conditions, all
last-written state will point towards a shortest path.2

Thus, the clean design under ideal conditions, but with
arbitrary initial forwarding state (subject to the constraint
on attached hosts), will deliver all packets, and undisturbed
floods will install shortest-path forwarding state. However,
under non-ideal conditions we can make no such guarantees.
Packets can be lost and routes can be far from shortest-path.
Indeed, one can find examples where routing loops can be
established under non-ideal conditions (though these loops
will be transient, as a packet caught in such a loop will reach
the maximal hopcount value, be flooded, and cause the in-
correct forwarding state to be erased).

Before turning to our practical algorithm, we now explain
in more detail why we need both the L and the F flags.
Note that in traditional L2 learning, flooding and learning
are completely local decisions: a switch floods a packet if
and only if that switch has no forwarding state for the desti-
nation, and it learns from all packets about how to reach the
source. This works because packets are either constrained to
a well-formed tree (which is established via STP) or dropped
(while STP is converging). In contrast, AXE switches set the
F flag the first time the packet arrives at a switch that has
no forwarding state for the destination (or has forwarding
state pointing to a dead link), and then the packet is flooded
globally regardless of whether subsequent switches have for-
warding state for the destination. This allows for delivery
even when the forwarding state is corrupted (e.g., by failures
or unlearning) and there is no guarantee that following the
remaining forwarding entries will deliver the packet.

While flooding is more prevalent in AXE than in tradi-
tional L2, learning is more restrictive: The clean AXE algo-
rithm only learns from flooded packets with the L flag set.
This is because when packets are flooded from arbitrary lo-
cations, the resulting learned state might be misleading. Con-
sider the network depicted in Figure 1, and imagine packets
flowing from A to B along the path S1–S2–S3–S4–S5. If there
is a disruption in the path, say the link S3–S4 is broken, AXE

S1 S2 S3 S4 S5

S6

x BA

Figure 1: A network with two hosts (A and B), six switches, and a failed
link.

will flood packets arriving at S3 instead of attempting to send
them down the failed link toward S4. Packets flooded from
a failure, such as those handled by S3, must necessarily go
backwards (in addition to going out all other ports), as that
may be the only remaining path to the destination (as is the
case in Figure 1, where after the failure of S3–S4, the only
valid path to B for packets at S3 is backward through the path
S2–S6–S4–S5). One certainly does not want to learn from
packets that have traveled backwards, as one could poten-
tially be learning the reverse of the actual path to the desti-
nation. In this example, S2 would learn that A is towards S3,
which is clearly incorrect. Thus, when packets are flooded
after reaching a failure, the L flag is switched off, indicating
that they are unlikely to be suitable for learning.

2.2 Practical Algorithm
We presented the clean algorithm to illustrate the basic ideas
and show how they lead to two correctness results under
ideal conditions. These ideal conditions do not hold if there
is congestion, since packet losses can occur; in the clean de-
sign we liberally use packet floods when problems are en-
countered, which only exacerbates congestion. Thus, for our
more practical approach we modify some aspects of the al-
gorithm to reduce the number of floods, to enable learning
from non-flood packets, and to give priority to flood packets.
Unfortunately, our correctness results no longer hold with
these modifications in place. However, simulations suggest
that both the clean and the practical designs perform well un-
der reasonable loads and failure rates, but that the practical
algorithm is significantly better at dealing with and recover-
ing from overloads or networks with high rates of failure.

The main changes from the clean design are as follows:

• When a packet exhausts its HC, we merely drop the
packet and erase the local forwarding state (rather than
flooding the packet). This reduces the number of floods
under severe overloads, though the packet in question
is not delivered (which violates the first correctness
condition under ideal conditions).
• Switches learn from all packets with the L flag set, not

just flooded packets. This also reduces the number of
floods, though the resulting paths are not always the
shortest paths (which violates the second correctness
condition under ideal conditions).
• Switches have one queue for flooded packets and an-

other for non-flooded packets, and the flood queue is
given higher priority. Because floods occur in the ab-
sence of any state or the presence of bad state, and be-
cause floods trigger learning, accelerating the delivery
of floods enhances the learning of good state.
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We also introduced various other wrinkles into the practi-
cal algorithm that improved its performance in simulations,
such as only unlearning at the first hop and dealing with
hairpinning (discussed later). While the old correctness con-
ditions no longer hold with these changes, we can say that
under ideal conditions (i) unless the state for an address con-
tains a loop or is longer than the maximal HC, packets sent to
it will be delivered; and (ii) the forwarding state established
by undisturbed learning will enable packets to reach the in-
tended destination, but the paths are not guaranteed to be
shortest. We feel that the loosening of the correctness results
is a good trade-off for the improved behavior under overload.

We later extend AXE to handle both multipath and multi-
cast delivery, but in the next two subsections we discuss the
implementation of the deduplication filter and then examine
the pseudocode for the practical unipath algorithm.

2.3 The Deduplication Filter
Our deduplication filter provides approximate set member-
ship with false negatives – the opposite of a Bloom filter’s ap-
proximate set membership with false positives. While there
are many ways to build such a filter; the approach we use is
essentially a hash set with a fixed size and no collision reso-
lution (that is, you hash an entry to find a position and then
just overwrite whatever older entry may be there). Each entry
contains a <src, nonce, L> tuple. On reception, these packet
fields are hashed along with an arbitrary per-switch salt (e.g.,
the Ethernet address of one of its interfaces), and the hash
value is used to look up an entry in the filter’s table. If the
src, nonce, and L in the table entry match the packet, the
packet is a duplicate and the filter returns True. If the values
stored in the table entry do not match the packet, the values
in the table entry are overwritten with the current packet’s
values, and the filter returns False.

Note that the response that a packet is a duplicate can only
be wrong if the nonce has been repeated. We implement the
nonce using a counter, but given that the nonce field has a fi-
nite size, it must eventually wrap. Thus, it is conceivable that
a switch might produce a nonce such that a filter somewhere
in the network still contains an entry for an older packet with
the same nonce, and the possibility of this increases as the
filter size increases (which is otherwise a good thing). Fortu-
nately, we can compute the minimal amount of time required
for this to occur. For example, with a 24 bit nonce space (as
put forth as a possibility earlier), a 10 Gbit network transmit-
ting min-sized packets would require around 1.16 seconds to
wrap the counter (which is a relatively long time considering
that the two-queue design ensures that flooded packets are
delivered quickly). By timestamping entries in the filter, any
entry older than this can be invalidated.

The negative response, however, can happen simply when
two packets hash to the same value: the second would over-
write the first, and if another copy of the first arrived later, it
would not be detected as a duplicate. We lower the probabil-
ity of these false negatives by only applying packet dedupli-
cation to flooded packets (since flooded packets always “try”
to loop, while non-floods only loop in the rarer case that bad
state has been established), and the per-switch salt value de-

creases the chance that the same false negative will happen
at two different switches.

2.4 Details of Practical Algorithm
We can now present the pseudocode for a more practical ver-
sion of the AXE unipath design (Algorithm 2), in which we
explicitly include invocations of the deduplication mecha-
nism, but (for brevity) assume that the AXE header has al-
ready been added if not present and that HC has been incre-
mented. The code has two phases: the first largely involves
deduplication and learning/unlearning, while the second is
responsible for forwarding the packet.

Some changes relative to the clean algorithm are fairly
straightforward; notably the decision to drop rather than flood
packets where the HC exceeds the maximum is embodied in
lines 2-9, and the decision to learn from all packets with the
L flag set (rather than just flooded packets) is captured in line
30. Other changes are relatively minor, such as learning even
from packets with the L flag not set if they have a smaller HC
(line 29), and unlearning only at first hops (lines 21-26).

A more complicated change is that concerning “hairpin
turns” (line 62) where a switch has a forwarding entry point-
ing back the way the packet came. For an example of this,
return to Figure 1 and imagine that a packet from A arriving
at S3 encounters state pointing back towards S2. Before for-
warding the packet back to S2, the L flag is unset (line 64) as
S2 learning that the path to A is via S3 is clearly ludicrous.
When the packet arrives back at S2, S2 may still have state
pointing towards S3. While S2 and S3 could simply hairpin
the packet back and forth until the hopcount reaches the max-
imum and the loop is resolved the same as any other loop, the
combination of the forwarding state and the unset L flag are
used to infer the presence of this special case length-two cy-
cle and remove the looping state immediately (line 67). Note
that we again make the practical decision to drop the packet
and not convert it to a flood, as the existence of such a cy-
cle is generally indicative of already adverse conditions. The
other possibility is that the packet arrives back at S2 and S2
now has state which does not point to S3. Such hairpinning
can arise, for example, due to multiple deduplication failures.
More commonly, it is caused by our use of two forward-
ing queues. With two queues, a flooded packet can “pass”
an already queued non-flood packet on a switch; when the
non-flood one reaches the next switch, the flooded one has
already changed the switch’s state. For example, imagine a
non-flood packet to B queued on S2 with S2 not yet aware
that the S3−S4 link has failed. A learnable flood packet from
B arrives at S2 (via S6), is placed in the high priority flood
queue, and is immediately forwarded to S3: S3 learns that
the path to B is back towards S2. By the time the non-flood
packet finally leaves the queue on S2, the state on S2 already
reflects the correct new path to B via S6 – as does the state
on S3 (thus requiring the packet to take a hairpin turn).

2.5 Enhancements to the Design
AXE can trivially accommodate various features that L2 op-
erators have come to rely on (e.g., VLAN tagging); here we
discuss three more significant ways AXE can be extended.
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1: . * Start of first phase. *
2: if p.HC > MAX_HOP_COUNT then
3: . Either the forwarding state loops or this is an old flood which
4: . the deduplication filter has never caught.
5: if !p.F then
6: Table.Unlearn(p.EthDst) . Break looping forwarding state.
7: end if
8: return . Drop the packet.
9: end if

10:
11: . Check and update the deduplication filter.
12: if p.F then
13: IsDuplicate← Filter.Contains( <p.EthSrc, p.Nonce, p.L> )
14: Filter.Insert( <p.EthSrc, p.Nonce, p.L> )
15: else
16: . Non-floods aren’t deduped; assume it’s not a duplicate.
17: IsDuplicate← False
18: end if
19:
20: SrcEntry← Table.Lookup(p.EthSrc)
21: if !IsDuplicate and !p.L and SrcEntry and SrcEntry.HC = 1 then
22: . We’re seeing (for the first time) a packet which probably
23: . originated from this switch and then hit a failure. Since our
24: . forwarding state apparently points to a failure, unlearn it.
25: Table.Unlearn(p.EthDst)
26: end if
27:
28: if !SrcEntry . No table entry, may as well learn.
29: or p.HC < SrcEntry.HC . Always learn a better hopcount.
30: or (p.L and !IsDuplicate) . Common case, learnable non-duplicate.
31: then
32: Table.Learn(p.EthSrc, p.InPort, p.HC) . Update learning table.
33: end if
34:
35: . * Start of second phase. *
36: if IsDuplicate then
37: return . We’ve already dealt with this packet; drop the duplicate.
38: end if
39:
40: if p.F then
41: . Flooded packets just keep flooding.
42: Flood(p) . Send out all ports except InPort.
43: return . And we’re done.
44: end if
45:
46: DstEntry← Table.Lookup(p.EthDst) . Look up the output port.
47: if !DstEntry or IsPortDown(DstEntry.Port) then . No valid entry.
48: if !p.L then
49: return . Packet hairpinned but is now lost. Drop and give up.
50: end if
51:
52: p.F ← True . About to flood the packet.
53: if p.HC = 1 then
54: . This is the packet’s first hop. L is already set.
55: Flood(p) . Flood learnably out all ports except InPort.
56: else
57: p.L← False . Not the first hop; don’t learn from the flood.
58: Filter.Insert( <p.EthSrc, p.Nonce, p.L> ) . Update filter.
59: Flood(p) . Sends out all ports except InPort.
60: Output(p, p.InPort) . Send backwards too.
61: end if
62: else if DstEntry.Port = p.InPort then . Packet wants to hairpin.
63: if p.L then . If learnable, try once to send it back.
64: p.L← False . No longer learnable.
65: Output(p, p.InPort)
66: else . Packet trying to hairpin twice
67: Table.Unlearn(p.EthDst) . Break looping forwarding state
68: end if
69: else
70: Output(p, DstEntry.Port) . Output in the common case.
71: end if

Algorithm 2: AXE pseudocode for processing a packet p.

2.5.1 Periodic optimization
In order to make sure that non-optimal paths do not per-
sist, switches will periodically flood packets from directly
attached hosts, allowing all switches to learn new entries for
it (a switch knows that it is a host’s first hop because of the
hopcount in its forwarding entry).

2.5.2 Traffic engineering
The approach AXE takes to ensure L2 connectivity is de-
signed to be orthogonal to potential traffic engineering ap-
proaches. While some approaches aim to carefully schedule
each flow in order to avoid congestion and meet other policy
goals, work such as Hedera [2] showed that identifying and
scheduling only elephant flows can provide substantial ben-
efit. AXE and Hedera are complementary, and using them
together only requires one extra bit in the header – a flag
to indicate whether the packet should follow AXE paths or
Hedera paths. In a network using both approaches, we use
Hedera to compute paths for elephant flows, while mice use
AXE paths. When a packet on a Hedera-scheduled flow en-
counters a failure, we set the extra “AXE path” flag and then
route the packet with AXE. The flag is required to ensure
that the packet continues to be forwarded to its destination
using only AXE, as a combination of Hedera and AXE paths
could produce a loop. In this way, traffic can be scheduled
for efficiency, but scheduled traffic always has a guaranteed
fallback as AXE ensures connectivity at all times.

2.5.3 ECMP
While the discussion thus far has been about unipath deliv-
ery, extending AXE to support ECMP requires only three
changes: modifying the table structure, enabling the learn-
ing of multiple ports, and encouraging the learning of mul-
tiple ports. We extend the table by switching to a bitmap of
learned ports (rather than a single number), and by keeping
track of the nonce of the packet from which the entry was
learned. Upon receiving a packet with the L and F flags set,
if the hopcount and nonce are the same as in the table, we
add the ingress port to the learned ports bitmap. If these two
fields do not match, we replace (or don’t replace) the entry
based on much the same criteria as for the unipath algorithm.
If L is set and F is not, we check that the hopcount and port
are consistent with the current entry. If not, we replace the
entry and flood the packet (to encourage a first-hop flood).

A problem with this multipath approach is that while it is
easy to learn multiple paths in one direction – the originator
must flood to find the recipient, and this flood allows learning
multiple paths – it is not as easy to learn multiple paths in the
reverse direction, as packets back to the originator will fol-
low one of the equal cost paths and therefore only establish
state along that single path. To address this, we need to flood
in the reverse direction as well, encouraging multipath learn-
ing in both directions. This is, in fact, similar to the behavior
of the “clean” algorithm discussed in Section 2.1, though our
implementation here is slightly more subtle in order to inte-
grate with the rest of the practical algorithm and to provide
multiple chances to learn multiple paths given that we do
not expect it to operate under ideal conditions. The key is
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adding another port bitmap to each table entry – a “flooded”
bitmap. When a packet is going to be forwarded using an en-
try, if the bit corresponding to the ingress port is 0 (“hasn’t
yet been flooded”) and the packet’s hopcount is 1 (this is its
first hop), we set the flooded bit for the port, and perform a
flood. This is a first-hop flood, so L is set, and it therefore
allows learning multiple paths. The obvious downside here
is some additional flooding, but the upside is that equal cost
paths are discovered quickly.

2.6 Reasoning About Scale
In this section so far, we have focused on the details of the
AXE algorithm, its properties, and what functionality it can
support. Here we address another rather basic question at a
conceptual (but not rigorous) level: How well does it scale?

AXE is an L2 technology that adopts the flood-and-learn
paradigm. Our question is not how well a flood-and-learn
paradigm can scale, because that will depend in detail on
the degree of host mobility, the traffic matrix, and the band-
width of links. Rather, our question is whether AXE’s de-
sign hinders its ability to scale to large networks beyond
the baseline inherent to any flood-and-learn approach. More-
over, we focus on bandwidth usage, and do not consider
the impact of AXE’s additional memory requirements be-
cause hardware/memory constraints will change over time.
For bandwidth, the main factor that differentiates AXE from
traditional L2 is the use of flooding when failures occur.

We can estimate the impact of this design choice as fol-
lows. Consider a fully utilized link of bandwidth B that sud-
denly fails. If the average round-trip-time of traffic on the
link is RT T , then roughly RT T ∗B worth of traffic will be
flooded before congestion control will throttle the flows. If
we want to keep the overhead of failure-flooding below 1%
of the total traffic, that means we can tolerate no more than f
failures per second, where f = 0.01

RT T . If the RTT is 1ms, then
the network-wide failure rate would need to be less than 10
per second. Assuming that links have MTBFs greater than
106 seconds, then the traffic due to failures is less than 1%
of the link for networks with less than 107 links. Thus, in
terms of bandwidth, AXE can scale roughly as well as any
learn-and-flood approach.

3 P4 Implementation
We have argued – and in Section 5 we show through simula-
tion – that AXE provides a unique combination of features:
fully plug-and-play behavior, no control plane, the ability to
run on general topologies, and near-instantaneous response
to failures. However, if vendors were required to create a new
generation of ASICs to support it, then AXE would likely be
no more than an intriguing academic idea.

We think AXE can avoid this unfortunate fate because
of the rise of highly reconfigurable hardware with an open-
source specification language, and here we are thinking pri-
marily of RMT [5] and P4 [18], but other such efforts may
arise. In this section we discuss our implementation of AXE
in P4, which we have tested in Mininet [27] using the bmv2
P4 software switch [4]. This testing verified that our imple-
mentation does, indeed, implement the protocol as expected.

While the rest of this section delves into sometimes arcane
detail, our point here is simple: once P4-supporting switches
are commercially available, AXE could be deployed simply
by loading a P4 implementation. While this does not assure
deployment, it does radically reduce the barriers.

Unlike a traditional general-purpose programming lang-
uage, P4 closely resembles the architecture of network for-
warding ASICs. Programs consist of three core components:
a packet parser specified by a finite state machine, a series
of match-action tables similar to (but more general than)
OpenFlow [26], and a control flow function which defines
a processing pipeline (describing which tables a packet is
processed by and in which order). The parser is quite gen-
eral and easily implements AXE’s modified Ethernet header.
Thus, our primary concern was how to implement the AXE
forwarding algorithm as a pipeline of matches and actions.

Putting aside the nonce, deduplication filter, and learning
(discussed below), the AXE algorithm is simply a series of
if statements checking for various special conditions. Such
if statements can be implemented in two ways in P4: ei-
ther as tables which match on various values (with the de-
fault fall-through entry acting as an else clause), or as actual
if statements in the control flow function. The “bodies” of
the if statements are implemented as P4 compound actions.
We were able to use the slightly more straightforward latter
method almost exclusively, which allowed us to structure our
P4 code very similarly to the pseudocode shown above. This
approach, however, is not without its caveats.

As control flow functions cannot directly execute actions,
we currently have a relatively large number of “dummy” ta-
bles that merely execute a default action; the control flow
function invokes these tables simply to execute the associ-
ated action (that is, the tables are always empty). If hard-
ware performance is related to the length of the forwarding
pipeline, or if there are hard limits on the number of ta-
bles (less than the 26 that we currently require), the code
may need to be reorganized. Specifically, we can take the
Cartesian product of nested conditionals to collapse several
of them into a single table lookup. This approach can likely
reduce the pipeline length dramatically, though the resulting
code will surely become less readable. Whether such an opti-
mization is necessary depends on the particular features and
limitations of the associated ASIC (as well as the optimiza-
tions that the compiler backend for the target ASIC applies).
Learning: P4 tables cannot be modified from the data plane
– only from the control plane. This may be reasonable for a
simple L2 learning switch: when a packet’s source address
is not in the table, the packet is sent to the switch’s control
plane, which creates a new table entry. Such a trip from data
plane to control plane and back has a latency cost, however,
and we would like to avoid it whenever possible, especially
considering that AXE table entries contain not only the port,
but the hopcount to reach the address’ host, and keeping this
hopcount information up to date is important to the algo-
rithm. We achieve this by separating learning into two parts,
as depicted in Figure 2. The first part is a table, which is
populated by the control plane the first time a given Ether-
net address is seen, much like a conventional L2 learning
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Match

eth.src == 12:48:A1:15:79:36

eth.src == EA:AD:CA:A9:B2:A0

eth.src == 2A:33:86:97:9F:79

eth.src == D6:DE:0A:64:3A:13

eth.src == 9E:88:EE:7B:90:53

src Mapping Table

Action

meta.src_cell = 1

meta.src_cell = 3

meta.src_cell = 0

meta.src_cell = 2

meta.src_cell = 4

Learning Registers

Port

8

2

2

2

11

HC

1

8

12

8

3

0

1

2

3

4

Figure 2: The first time a new MAC is seen, the packet is sent to the control
plane, which adds an entry mapping the MAC to a register index. Subse-
quent packets are simply looked up in the mapping table, and new values
for the port and hopcount can be “learned” simply by rewriting the register
entirely in the data plane. A nearly identical table maps from eth.dst to its
register index. A special port value indicates an invalid learning entry.

switch. However, instead of the table simply holding the as-
sociated port, it instead contains an index into the second part
– an array of P4 registers, which are data plane state that can
be modified by actions in the data plane. Thus, when pro-
cessing a packet that requires changing learning state, it can
be done at line rate entirely within the data plane, with the
sole exception of the first packet (for which the control plane
must allocate a register cell and add a table entry mapping
the Ethernet address to it). As the P4 specification evolves,
or hardware implementations support new features, it may
be possible to eliminate control plane interaction entirely.
Deduplication Filter: The deduplication filter is a straight-
forward implementation of the design discussed in Section
2.3. For reasons similar to the above, we again use an array
of P4 registers to hold the filter entries rather than a P4 table
(actually, we use a separate register array for each field, as
the struct-like registers described in the P4 spec are not yet
supported in bmv2 or its compiler). Then a P4 field list cal-
culation is used to specify a hash of the appropriate header
fields (the source Ethernet address, the nonce, and the L flag)
along with a seed value stored in a P4 register and populated
by the control plane at startup. The computed hash is stored
in packet metadata and used to index into the filter arrays.
Nonce: A switch must assign a nonce to each packet it re-
ceives from a directly-attached host. A straightforward ap-
proach is to use a single P4 register to hold a counter, though
this requires that reading and incrementing the register be
atomic, which may be problematic for real hardware if differ-
ent ports essentially operate in parallel. Instead, we can use
a nonce register per port instead of a single shared register
per switch. As each port would have an independent counter,
nonce allocations would no longer be entirely unique. How-
ever, this is not problematic because, as discussed in Section
2.3, the deduplication key is a tuple of <src, nonce, L>: for
the typical case when a given host interface is only attached
to a single port, the combination of the interface’s address
and a per-port nonce will be unique (this may preclude some
types/implementations of link aggregation; however, AXE
obviates some motivations for link aggregation anyway).
Link status: P4 does not specify a way for the data plane to
know about link liveness. Our implementation emulates this
functionality by creating “port state” registers, and we man-
ually set their values to simulate port up and down events. In
a real hardware implementation, such registers could be ma-
nipulated by the control plane as it detects link state changes
using whatever mechanisms the switch provides for link fail-

ure detection. We also speculate that P4-capable ASICs will
have some way to query this information more directly from
the data plane (without control plane involvement) for at
least some failure detection mechanisms.

Our P4 implementation is not written with an eye towards
efficiency on any particular P4 target, as targets are diverse
and no P4 hardware target is yet available to us. Neverthe-
less, we see the existence of a functionally complete P4 im-
plementation as a promising beginning.3

4 Multicast
Many L2 networks implement multicast via broadcast, with
filtering done by the host NICs (sometimes with the addition
of switches implementing “IGMP snooping” [6] wherein an
ostensibly L2 device understands enough about L3 to prune
some links). We investigated whether we could use AXE
ideas to provide native support for multicast in a relatively
straightforward way, and found the answer to be yes. We lack
space to fully illuminate our design, but we sketch it here.

We try to emulate a DVMRP-like [32] multicast model,
with source-specific trees for each group. While AXE’s abil-
ity to safely flood makes reliable delivery easy, the design
challenge is to enable rapid construction (and reconstruc-
tion) of trees in order to avoid the additional traffic over-
head of unnecessary flooding. Our approach forms multicast
trees by initially sending all packets for the group out all
ports. Unnecessary links and switches are then pruned. When
the topology changes or when new members are added to a
pruned section of the tree, we simply reset the tree and re-
construct it; this avoids maintaining a tree as changes occur
(which turns out to be quite difficult).

Multicast in AXE has four types of control messages:
JOIN, LEAVE, PRUNE, and RESET. The first two are how
hosts express interest/disinterest in a group to their connected
switches. PRUNE is much the same as its DVMRP counter-
part and is used for removing ports and switches from the
tree. RESET enables a switch to indicate that something has
changed which necessitates that the current tree be invali-
dated and rebuilt; we come back to this shortly.

Going into the algorithm in more detail, we retain much
of the AXE header, but remove the L flag and add a “mul-
ticast generation number” field which is used for coordi-
nation. A source-group’s root switch (the switch to which
the source is attached) dictates a generation number for the
source-group pair. Other switches that are part of the group
simply track the latest number. All switches stamp all pack-
ets for this source-group (including control messages) with
the latest generation number of which they are aware. If a
non-root switch receives a packet for the current generation,
it forwards the packet out all of the currently unpruned ports
for the source-group. If the packet is for a new generation,
the tree is being rebuilt; the switch moves to the new gener-
ation number and un-prunes all ports. If a packet is stamped
with an old generation number, the packet is sent over all
3And, more broadly, we see the fact that AXE can be imple-
mented in an ASIC-friendly language like P4 as an indicator
that it may be suitable for ASIC implementation more gen-
erally – reconfigurable or otherwise.
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ports; this is not optimal, but it ensures that outstanding pack-
ets from old generations are delivered even while a new gen-
eration tree is being established.

As mentioned above, when constructing a new tree, all
ports are initially unpruned – this is basically the equivalent
of flooding. Switches therefore potentially receive packets
from the root on multiple ports, and can decide on an “up-
stream” port based on the best hopcount. When a switch re-
ceives a packet from the group on any port that is not its up-
stream port, it sends a PRUNE in response. This causes the
packet’s original sender to stop sending on this port. Pruning
is kept consistent by ignoring PRUNEs for any generation
except the current one. In this way, the initial flood-like be-
havior is cut down to a shortest-path tree.

When any switch notices that the tree may need to be re-
built due to either (a) being invalid (i.e., uses a link that has
failed) or (b) possibly needing to expand or change shape
(due to a port going up or down or a new member joining
the group), the switch enters flood mode for the group, and
may send a RESET. While a switch is in flood mode for a
group, it sets the F flag and floods all packets it receives for
the group, disregarding whether a port has been pruned or
not. The switch leaves flood mode when it sees a new, higher
generation number, which indicates that the root has begun
the process of building a new tree. Being in flood mode has
two effects. Firstly, it makes sure that packets for the group
continue to be delivered. Secondly, when the root switch sees
any packet with the F bit set and the current generation num-
ber, it recognizes this as meaning that some switch needs
the tree to be reset. The root switch then initiates this by in-
crementing the generation number. While any packet can be
used to reset the tree (by setting F), there are times when the
tree should be rebuilt but no packet is immediately available
(for example, when a new switch is plugged into the net-
work). It is for these cases that the RESET message exists:
they can be used to initiate a reset without needing to wait
for a packet from the group to arrive (which, if the network
is stable, may not be for some time).

For safety, the root switch periodically floods multicast
packets even in the absence of any other indications to do
so. This bounds the time that the group suffers with a bad
tree if another switch is trying to reset the tree and the flood
(or RESET) packets are being lost elsewhere in the network.

5 Evaluation
In this section, we evaluate AXE via ns-3 [28] simulations.
We ask the following questions: (i) How well does AXE per-
form on a static network? (ii) How well does AXE perform in
the presence of failures? (iii) How well does AXE cope with
host migrations? (iv) How many entries are required for the
deduplication filter? (v) How well does AXE recover from
severe overloads? and (vi) How well does multicast work?

For some of these questions, we compare AXE to “Ide-
alized Routing” which responds to network failures by in-
stalling random shortest paths for each destination after a
specified delay. The delay is an attempt to simulate the im-
pact of the convergence times which arise in various routing
algorithms without having to implement, configure (in terms

of the many constants that determine the convergence be-
havior), and then simulate each algorithm. Note that the time
to actually compute the paths is not included in the simu-
lated time – only the arbitrary and adjustable delay. The fact
that we compute a separate and random shortest-path tree
for each destination is significant: a naive shortest-path algo-
rithm or aggregation would overlap paths significantly and
not spread traffic across the network (especially in the fat tree
scenario described below). This approach is not as good as
ECMP, but is certainly better than a non-random approach.

We do not compare directly to spanning tree for two rea-
sons. In terms of effectively using links, spanning tree’s lim-
itations are clear (the bisection bandwidth is that of a single
link) and, as we will show, AXE is essentially as good as
Idealized Routing (where the bisection bandwidth depends
in detail on the network topology and link speeds). In terms
of failure recovery, spanning tree is strictly worse than Ideal-
ized Routing (in that failures in spanning trees impact more
flows). Thus, we view Idealized Routing as a more worthy
target, providing more ambitious benchmarks against which
we can compare.

5.1 Simulation Scenarios
We perform minute-long simulations in two different scenar-
ios – one is a fat tree [1] with 128 hosts as might be used in
a compute cluster, and the other is based on our university
campus topology. For the former, we assume that links have
small propagation delay (0.3us). For the latter, we assume
somewhat longer propagation delays (3.5us). As we do not
have specific host information for the campus topology (and
it is likely to be fairly dynamic due to wireless users), we
simply assign approximately 2,000 hosts to switches at ran-
dom. While we would have liked to include more hosts, we
limited the number in order to make simulation times man-
ageable for Idealized Routing – neither our global path com-
putation nor ns-3’s IP forwarding table is optimized for large
numbers of unaggregated hosts.

For each topology, we evaluate a UDP traffic load and a
TCP traffic load. Although large amounts of UDP may be
rare in the wild, using it as a test case helps isolate net-
work properties (whether AXE or Idealized Routing) from
the confounding aspects of TCP congestion control with its
feedback loop and retransmissions. Our UDP sources merely
send max-size packets at a fixed rate. For each UDP packet
received, the receiver sends back a short “acknowledgment”
packet to create two-way traffic (which is important in any
learning scenario). For TCP traffic, we choose flow sizes
from an empirical distribution [3]. In terms of UDP sending
rates, in the cluster case we use a per-host rate of 100 Mbps.
In the campus case, we use a per-host rate of 1 Mbps. For
TCP, we pick the flow arrival rate so as to roughly match the
UDP per-host sending rates. We ran simulations using both
1 Gbps and 10 Gbps links, and we omit the 10 Gbps results,
which were (unsurprisingly) slightly better.

We generate traffic somewhat differently for each topol-
ogy. For the cluster case, we model significant “east-west”
traffic by choosing half of the hosts at random as senders,
and assigning each sender an independent set of hosts as re-
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Figure 3: Comparison of unnecessary drops for AXE versus Idealized Rout-
ing with various specified convergence times.

Figure 4: Number of flows where Idealized Routing suffers significantly
higher FCT delay than AXE.

ceivers (each set equaling one half of the total hosts). For
the campus topology, we believe traffic is concentrated at a
small number of Internet gateways and on-campus servers,
so all hosts share the same set of about twenty receivers.

5.2 Static Networks
Here we show no graphs, but merely summarize the results
of our simulations. In terms of setting up routes in static net-
works, the unipath version of AXE produced shortest path
routes equivalent to Idealized Routing in both topologies,
and in the cluster topology the multipath version of AXE
produced multiple paths that were equivalent to an ECMP-
enabled version of Idealized Routing. This is clearly superior
to spanning tree, but no better than what typical L3 routing
algorithms can do (and L2 protocols like SPB and TRILL
that also use routing algorithms). Thus, AXE is able to pro-
duce the desired paths.

5.3 Performance with Link Failures
To characterize the behavior of AXE in a network undergo-
ing failures, we “warm up” the simulation for several sec-
onds and then proceed with one minute of failing and recov-
ering links using a randomized failure model based on the
“Individual Link Failures” in [24] but scaled to considerably
higher failure rates. These failure rates represent extremely
poor conditions: 24 failures over one minute for the cluster
case and 193 failures over one minute for the campus case.

For simulations using UDP traffic, we looked at the num-

(a) Campus topology

(b) Cluster topology

Figure 5: Overhead for host migrations. On average, every host migrates
once per the time interval shown on the X axis. The Y axis shows the in-
crease in total traffic.

ber of undelivered packets, which is shown in Figure 3. In
the cluster case, AXE incurs zero delivery failures, while
Idealized Routing incurs increasingly many as the routing
delay grows. In the campus case, the high failure rate and
the smaller number of redundant paths leads to network par-
titions, and all packets sent to disconnected destinations are
necessarily lost. We ignore these packets in our graph, show-
ing only the “unnecessary” losses (packets sent to connected
destinations but which routing could not deliver). We see that
AXE suffers a small number of “unnecessary” losses (24),
while Idealized Routing has significantly more even when
the convergence delay is 0.5ms. AXE’s few losses are due
to overload: AXE has established valid forwarding state, but
the paths simply do not have enough capacity to carry the en-
tire load (since we were not running AXE with ECMP turned
on in this experiment, Idealized Routing – which always ran-
domizes per-destination routing – does a better job of spread-
ing the load across all shortest paths, and so does not suffer
these losses). Running this same experiment with higher ca-
pacity links, AXE achieves zero unnecessary losses.

We performed a similar experiment using TCP. However,
as TCP recovers losses through retransmissions, we instead
measure the impact of routing on flow completion time. We
find that when comparing FCTs under AXE and Idealized
Routing, either they are very close, or Idealized Routing is
significantly worse due to TCP timeouts. Figure 4 shows the
number of flows which appear to have suffered TCP timeouts
which AXE did not (i.e., have FCTs which are at least two
seconds longer); there are no cases where the reverse is true.

5.4 Performance with Host Migrations
Migration of hosts (e.g., moving a VM from one server to
another or a laptop moving from one wireless access point
to another) is another condition that requires re-establishing
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Figure 6: Effect of deduplication filter size on UDP traffic in the cluster
topology with 1 Gbps links.

routes. To see how well AXE copes with migration, we run
similar experiments to those in the previous section, but mi-
grating hosts at random and with no link failures. Figure 5
shows the results of this experiment for various different rates
of migration. We find that the increase in total traffic is min-
imal – even at the ridiculously high migration rates of each
host migrating at an average rate of once per minute, the in-
crease in traffic is under 0.44% and 0.02% for the campus
and cluster topologies respectively. Note this overhead is just
the overhead from AXE flooding and a gratuitous ARP; we
did not model, for example, the traffic actually taken to do a
virtual machine migration (though at migration rates as high
as we have simulated, we would expect the AXE flooding to
be vanishingly small in comparison!).

5.5 Deduplication Filter Size
Deduplication using our filter method is subject to false neg-
atives – it may sometimes fail to detect a duplicate. When
this happens occasionally, it presents little problem: dupli-
cates are generally detected on neighboring switches, or at
the same switch the next time it cycles around, or – in the
worst case – when they reach the maximum hopcount and
are dropped. However, persistent failure to detect duplicates
runs the risk of creating a positive feedback loop: the fail-
ure to detect duplicates leads to more packets, which further
decreases the chance of detecting duplicates.

The false negative rate of the filter is inversely correlated
with the filter size, so it is important to run with filter sizes
big enough to avoid melting down due to false negatives. To
see how large the filter size should be, we ran simulations
using filter sizes ranging between 50 and 1,600. Our simu-
lations were a worst case, as we used the UDP traffic model
(which, unlike TCP, does not back off when the network ef-
ficiency begins degrading).

Figure 6 shows the number of lost packets (which we use
as evidence of harm caused by false negatives) for the cluster
network with 1 Gbit links. Even under heavy failures, the
number of losses goes to zero with very modest sized filters
(≈500 – or even fewer for 10 Gbit links). We omit the largely
similar results for the campus topology.

5.6 Behavior under Load
Any learning network can be driven into the ground when
faced with a severe overload. Because such overloads can-
not always be prevented, it is crucial that the network recov-
ers once the problematic condition is resolved. This property

Figure 7: The ratio of received to transmitted packets in an experiment for
which the first half is dramatically over-driven. We show both the true AXE
algorithm which unlearns state on hopcount expiration as well as a version
which does not perform unlearning.

follows from our design, but to verify it experimentally, we
ran a simulation on the cluster topology with highly random-
ized traffic and a severely undersized deduplication filter. We
noted the number of packets transmitted from sending hosts
and the number of packets received by receiving hosts in
half-second intervals, and the Y axis shows the latter divided
by the former: RX/TX. Ideally one would want RX/TX to be
1, and values less than this indicate degradation of network
performance. The results are shown in Figure 7.

For the first five seconds of the simulation, we generate
a large amount of traffic (far more than the links and dedu-
plication filter can accommodate). This drives AXE into a
useless state where packets are flooding, dropping, being de-
layed, and are not reliably deduplicated or learned from. In-
deed, the fraction of this traffic that is delivered successfully
is negligible. At five seconds, we reduce the traffic to a man-
ageable level. We see that following a spike in delivery (as
the queues that built up in the first half of the experiment
drain), AXE quickly reaches the expected equilibrium.

We also verified that one of AXE’s safety mechanisms has
the expected effect. Specifically, when the hopcount reaches
its limit for a non-flood packet, the final switch removes (un-
learns) state for the packet’s destination. In this way, any fu-
ture packets to that destination will not follow the looping
path, but will instead find themselves with no forwarding
state and be flooded. To witness this in action, we disable
AXE’s hopcount expiration unlearning. This results in a dra-
matic drop in RX/TX ratio, because bad (looping) paths es-
tablished in the first part of the experiment are never repaired.

5.7 Multicast
While traditional approaches to multicast maintain trees
through incremental prunes and grafts, our AXE multicast
design rebuilds the tree from scratch every time there is a
change. Rebuilding a tree requires flooding packets and then
letting the tree be pruned back. Whether this approach is
reasonable or not depends on whether periodically switch-
ing back to flooding is overly wasteful. While networks can
clearly withstand the occasional flooded packet (broadcasts
for service discovery, and so on), the danger with multicast is
that rebuilding the tree during a high volume multicast trans-
mission (such as a video stream) may result in a large number
of packets being flooded. To examine this case, we simulated
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(a)

(b)

Figure 8: Convergence of a multicast tree using AXE while a source transmits a simulated 40Mbps video stream on the campus (a) and cluster (b). Each mark
in the graph is a packet transmitted from the source. The X axis is time, with 0 being the transmission time of the first packet following a tree reset. The Y axis
shows the normalized packet overhead: 1.0 is when the packet is being flooded, and 0.0 is when the packet is being sent only along the final converged tree.

a transmission of data at 40Mbps (a rather extreme case –
equivalent to a high-quality 1080p Blu-ray Disc) and exam-
ined the convergence of AXE’s multicast after triggering a
reset of the multicast tree. We repeated the experiment sev-
eral times on both topologies and with group membership
between 5% and 40%, and show a representative example of
a 5% run in Figure 8. The graphs show the overhead of extra
traffic, where a value of 1 indicates sending as much traffic
as a flood, and an overhead of 0 indicates sending as much
traffic as a shortest-path tree.

In the AXE multicast algorithm, the data plane recognizes
that a PRUNE should be sent, but the control plane is ulti-
mately responsible for creating the PRUNE message. Inter-
actions between the control and data planes, however, are not
especially fast in terms of packet timescales, so we modeled
1ms and 5ms latencies along with 0ms for comparison.4 We
find that even in the worst case, AXE converges quickly: the
overhead has dropped to less than 20% by about 5ms and is
either converged (on the campus topology) or negligible (on
the cluster topology) by about 10ms – and even at the high
rate of 40 Mbps, only 34 packets are sent during this 10ms.

It is worth noting that the convergence time is almost en-
tirely dictated by the control plane latency: with no control
plane latency, in the two experiments we show, the trees have

4OpenFlow switches have had latencies measured from
1.72ms up to 8.33ms for expensive table insertions [10].
AXE’s multicast control plane running directly on the switch
would avoid OpenFlow-specific overheads and requires no
expensive table update, so 5ms seems an outside estimate.

converged by the time the third or fifth packet is sent. Indeed,
for experiments we ran with a larger number of group mem-
bers, it had often converged by the second packet (the final
tree is larger when there are more members, and it therefore
takes fewer prunes to converge to it).

6 Related Work
Since the introduction of Ethernet, there have been efforts
to improve upon it, both in terms of its operational model
and its performance. AXE represents a new direction in this
body of literature, providing many advantages traditionally
associated with routing without sacrificing the simple plug-
and-play nature of traditional MAC learning.

There have been a wide variety of enhancements to Span-
ning Tree Protocol. Rapid Spanning Tree [13] improves upon
STP with faster link and failure recoveries. Additionally,
there have been numerous enhancements that build multi-
ple spanning trees in a single network to improve utilization
and redundancy. These include MSTP, MISTP [15], PVST,
PVST+ [14], and others. AXE dispenses with spanning trees
altogether, allowing it to achieve instantaneous failure recov-
ery and achieve short paths that utilize all links.

In datacenter networks, one trend that addresses many con-
cerns surrounding STP is to abandon L2 entirely, instead run-
ning IP all the way to the host [1,9]. This approach performs
well (similar to the Idealized Routing we evaluated against
in Section 5), though not as well as AXE in terms of how
quickly it recovers from failures. Work along the same lines
has used highly specialized Clos topologies coupled with an
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SDN control plane to achieve truly impressive results in a
datacenter context [31]. We note that none of these tech-
niques achieve AXE’s plug-and-play functionality, and all of
them require specially designed network topologies. AXE,
on the other hand, works on arbitrary topologies without is-
sue, making it ideally suited for less uniform environments.

Also in the datacenter context, F10 [23] achieves impres-
sive results by co-designing the topology, routing, and failure
detection. While it shares one of AXE’s primary goals (fast
failure response), the highly-coupled approach is starkly dif-
ferent. VL2 [9] maintains L2 semantics for hosts, but does
so using a directory service rather than flood-and-learn, and,
again, is designed with particular topologies in mind.

Recently there has been interest in bringing the techniques
of routing to L2 through technologies like SPB [12] and
TRILL [30]. These protocols use link state routing to com-
pute shortest paths between edge switches, thus inheriting
the advantages (and limitations) of L3 routing protocols.

In some ways, AXE is similar to Dynamic Source Rout-
ing [17], 802.2 Source Route Bridging [16], and AntNet [8].
These schemes all send special “explorer packets” looking
for destinations, collecting a list of switches they have passed
through. Upon reaching the destination, a report is sent back
to the source which can use the accumulated list of switches
to build a path. AXE differs most fundamentally in that it
does not use or create any special routing messages – ev-
erything needed to establish routes is contained in the AXE
packet header; rather than have the destination explicitly re-
turn a special routing packet, it relies on the destination to
create a packet in the return direction in the normal course
of communication (e.g., a TCP ACK). This difference also
applies to failure recovery: while DSR has another special
type of routing message to convey failure information and
induce the source to “explore” for new routes again, this too
takes place with plain data packets in AXE. An outcome of
all this is that AXE is simultaneously routing and deliver-
ing user data – there is no distinction (or latency) between
them. A further difference is that AXE does not keep work-
in-progress routing state in special packets, and instead uses
per-switch learning, requiring an alternate loop-prevention
strategy. While an SRB or an AntNet switch can identify a
looped packet because its own identifier already exists in the
packet’s list of hops, AXE packets contain no such list; thus,
the switch must “remember” having seen the packet.

Like AXE, Failure Carrying Packets (FCP) [21] minimizes
convergence times by piggybacking information about fail-
ures in data packets. In FCP, each switch has a (more-or-less)
accurate map of the network, and each packet contains infor-
mation about failed links in the map that it has encountered.
This is sufficient for an FCP switch to forward the packet
to the destination if any working path is available. AXE has
no such network map and so its strategy for failed packets is
simply to flood the packet and remove faulty state so that it
can be rebuilt (via learning).

Data-Driven Connectivity (DDC) [22] also uses data pack-
ets to minimize convergence times during failure. It uses a
global view of the network to construct a DAG for each desti-
nation. When failures occur, packets are sent along the DAG

in the wrong direction, which signals a failure to the receiv-
ing switch which can then (via flipping the directions of ad-
jacent edges) find a new path to the destination. Thus, FCP,
DDC, and AXE all use packets to signal failures, but whereas
FCP and AXE use actual bits in the header, the signaling in
DDC is implicit. Unlike AXE, which generally builds short-
est paths, paths in DDC may end up arbitrarily long. And
similar to FCP and dissimilar to AXE, it relies on some sort
of control plane to build a global view of the network.

Despite this large set of related efforts, none combine all
of AXE’s features: plug-and-play, near-instantaneous recov-
ery from failures,5 and ability to work on general topologies.
Thus, we see AXE as occupying a useful and unique niche
in the networking ecosystem.

7 Conclusion
Ultimately, our goal is to develop AXE as a general-purpose
replacement for off-the-shelf Ethernet, providing essentially
instantaneous failure recovery, unicast that makes efficient
use of bandwidth (not just short paths, but also ECMP-like
behavior), and direct multicast support – while retaining Eth-
ernet’s plug-and-play characteristics and topology agnosti-
cism. We are not aware of any other design that strikes this
balance. While we do not see AXE as a contender for special-
purpose high-performance datacenter environments (where
plug-and-play is largely irrelevant), in most other cases we
see it as a promising alternative to today’s designs.
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