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ABSTRACT
The performance and availability of cloud and content providers

often depends on the wide area networks (WANs) they use to in-

terconnect their datacenters. WAN routers, which connect to each

other using trunks (bundles of links), are sometimes built using

an internal Clos topology connecting merchant-silicon switches.

As such, these routers are susceptible to internal link and switch

failures, resulting in reduced capacity and low availability. Based

on the observation that today’s WAN routers use relatively sim-

ple trunk wiring and routing techniques, we explore the design of

novel wiring and more sophisticated routing techniques to increase

failure resilience. Specifically, we describe techniques to 1) optimize

trunk wiring to increase effective internal router capacity so as to

be resilient to internal failures, 2) compute the effective capacity un-

der different failure patterns, and 3) use these to compute compact

routing tables under different failure patterns, since switches have

limited routing table sizes. Our evaluations show that our approach

can mask failures of up to 75% of switches in some cases without

exceeding routing table limits, whereas competing techniques can

sometimes lose half of a WAN router’s capacity with a single failure.
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Figure 1: Globally-distributed WANs and WAN routers.

1 INTRODUCTION
Large cloud and content providers (like Google, Facebook, Net-

flix, and Microsoft) are expanding their own wide-area networks

(WANs) to meet service-level latency and throughput objectives

and to achieve high availability, all at low cost. These globally-

distributed WANs consist of dozens of sites [19, 25]. At each site

(Figure 1), one or more WAN routers forward (a) ingress and egress

traffic to one or more datacenters at the site and (b) transit traffic

between WAN sites. To achieve this, each WAN router connects to

datacenters and to WAN routers at the same or other sites using

trunks, which are logical collections of physical links that provide

high aggregate capacity [34].

The design of the WAN topology and its routing is crucial to the

performance and availability of the entire WAN. WANs must carry

large traffic volumes, often in the terabits per second (Tbps), so they

incorporate novel router designs that achieve high performance

and high utilization at low cost. However, the effect of small fail-

ures within WAN routers, or within trunks, can disproportionately

degrade the capacity of WAN routers, resulting in lower service

availability or in degraded user-perceived performance. In this pa-

per, we focus on the failure resilience of a common type of WAN

router designed using a non-blocking Clos [12] topology.

Clos-Based WAN Routers. In the last decade, some content

providers and router vendors have designed high-aggregate-

capacity WAN routers by arranging merchant-silicon switching

chips (e.g., the Broadcom Trident series [24], Arista 7050X3

series [21]) in a topology shown in Figure 1. In this topology, traffic

ingresses and egresses the WAN router at external ports attached
to the lower half of the lower layer of switches (also called layer-1

or L1 switches). Incoming traffic traverses internal links, bounces

off layer-2 or L2 switches, and then exits an external port towards

a datacenter border router or another WAN router. The use of

commodity merchant silicon ensures low cost, and the design of

the topology ensures non-blocking performance; a non-blocking

switch or router can satisfy any traffic matrix, which specifies the

volume of traffic between each ingress-egress trunk pair.

The aggregate capacity of the Clos-Based WAN router (hence-

forth, simply WAN router) is a function of the number of switches

used, which itself is a function of the switching chip radix (the num-

ber of switch ports) and the per-port capacity.With a 16-port switch,

the WAN router will require 16 L1 switches and 8 L2 switches to

achieve the non-blocking property and will have 128 full-duplex
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Figure 2: A Clos-basedWAN router with three trunks. At left, we
showhow twounits of traffic can be routed from trunkC to trunk
A. When a single link fails, only 50% of the demand is satisfied.

external ports [19]. If each port can support 40 Gbps of traffic, the

entire WAN router has a capacity of 5.12 Tbps.

Internal Routing in Clos-Based WAN Routers. Today, WAN

routers use a simple internal routing strategy. For example, consider

Figure 2 which depicts a smaller WAN router constructed using

4-port switches. This router interconnects three external trunks,

A, B and C with, respectively, 2, 2, and 4 links. Each link in this

topology, whether internal or external, has one unit of capacity.

Suppose that 2 units of traffic enter trunk C destined for A. The
ingress L1 switch uses ECMP-based forwarding, in which ingress

traffic is evenly load-balanced across the two internal links towards

two L2 switches. These L2 switches each then forward the traffic

to the switch connected to trunk A’s links.
The Impact of Internal Failures in a WAN Router. In a WAN

router, one or more L1 or L2 switches and/or one or more internal

links can fail (external links can also fail, and, while we do not

consider such failures in this paper, our approach extends to this

case (§7)). Such a failure can reduce the effective capacity of the

switch. In Figure 2, the failure of a single internal link (out of a total

of 8 internal links) reduces the router’s effective capacity by 50%,

and the router only satisfies one unit of the demand from C to A.
To understand how this example generalizes to more realistic

settings, Table 1 shows the reduction in effective capacity in a

128-port switch with 4 trunks for different failure configurations.

Specifically, the table shows the maximum reduction in effective

capacity across all possible traffic matrices, using a methodology

developed in this paper and described later. A 128-port switch has

8 L2 switches, 16 L1 switches, and 128 internal links. As Table 1

shows, a single internal link failure can reduce effective capacity
by 50%, and four concurrent link failures (out of 128) can result

in an effective capacity of a quarter of the original capacity. L1
switch failures can be equally catastrophic: removing 2 out of 16

L1 switch failures can reduce the effective capacity to zero for this
trunk configuration. However, the WAN router degrades gracefully
with L2 switch failures: each L2 switch failure reduces capacity by

1/8th, as it should.

Content and cloud providers strive to simultaneously achieve

high utilization (especially in a WAN where the cost of wide-area

links are high [25]) and high availability (to satisfy service-level ob-

jectives). To achieve this, WAN routers must mask as many failures

as possible, and gracefully degrade when not. This motivates our

search for techniques to improve the resilience of WAN routers.

Towards Better Failure Resilience in WAN Routers. Ideally,
a WAN router should be able to completely mask internal failures.
However, there are limits to failure masking. For example, when
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Figure 3: By carefully wiring trunks, and forwarding ingress traf-
fic out on L1 switches whenever possible, aWAN router canmask
failure of an internal link.

an L1 switch fails, capacity will necessarily degrade since its ports

cannot ingress or egress traffic. Similarly, if enough L2 switches or

internal links fail, it may not be possible to mask these failures. In

these cases, we require that capacity degrade gracefully: the loss in
capacity should be proportional to the fraction of failed hardware

resources (links or switches).

To understand how to achieve these requirements, consider Fig-

ure 3 which explains how we can mask the single link failure in

Figure 2. Figure 3 illustrates that, to minimize the impact of fail-

ures, we can: (a) carefully arrange trunks across the WAN router’s

external ports, and (b) route traffic at L1 switches when possible.

These techniques can avoid the capacity degradation of Figure 2.

For example, trunk A now connects to the first and third (from the

left) L1 switch, instead of only the first L1 switch. This permits the

first L1 switch to forward traffic from C to A and send less traffic

up to the L2 switches. This early forwarding reduces the upflow
(total traffic from L1 switches to L2 switches) and can completely

mask the single link failure.

Contributions. Our paper leverages the above two insights to de-

sign topology and routing schemes to maximize failure masking

and ensure graceful degradation in WAN routers. Indeed, our ap-

proach can mask all L2 and link failures in Table 1, and gracefully

degrade L1 switch failures. To achieve this, our paper makes three

contributions.

Our first contribution (§2) is the design of minimal-upflow trunk
wiring. Re-arranging the ports assigned to each trunk (the trunk

wiring) permits early forwarding of traffic between two trunks at

the L1 switch, without even traversing internal links. However,

early forwarding is not always possible: some traffic (the upflow)
needs to traverse L2 switches. Intuitively, minimizing the upflow

can improve the ability of the WAN router to sustain capacity in the

face of L2 and internal link failures. Given a trunk configuration,

we study how to minimize the total upflow from L1 to L2 switches.

The challenge in doing this is that, in practice, while trunk configu-

rations change on day, week, or month timescales, the inter-trunk

Effective capacity

No. failures Link L2 switch L1 switch

1 50.0% 87.5% 50%

2 48.3% 75.0% 0%

3 25.0% 62.5% 0%

4 24.1% 50.0% 0%

Table 1: Effective capacity of a 128-portWANrouterwith 4 trunks
consisting of (16, 32, 32, 48) links under different failures.
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traffic matrix can change more frequently. Thus, we need to de-

termine a trunk wiring that minimizes upflow across all possible
traffic matrices. Simply enumerating all possible traffic matrices is

infeasible at the scale of today’s WAN routers. Instead, we observe

that, given a trunk configuration, we can enumerate a smaller set of

extreme traffic matrices that dominate the set of all traffic matrices.

Using this observation, we develop a mixed-integer linear program

(MILP) formulation for the minimal-upflow trunk wiring problem.

We also prove that, for some trunk configurations, it is possible

to derive minimal-upflow trunk wiring without solving an MILP.

While our MILP formulation scales to reasonable problem sizes,

it hits scaling limits for 512-port WAN routers built from 32-port

switches. For these larger routers, we develop a fast heuristic for

trunk wiring that achieves the minimal upflow almost every time.

Our second contribution (§3) is the design of a method to com-

pute effective capacity under failures. Specifically, given a minimal-

upflow trunk wiring, we need a way to determine, for, say, failures

of links or of L1/L2 switches, the maximum capacity reduction in

theWAN router across all possible trafficmatrices. This is necessary

because, in practice, a traffic engineering algorithm such as the one

used in [19, 25] requires an estimate of the residual router capacity

for a given failure pattern. Because traffic engineering needs to be

fast, it may be infeasible to run an algorithm to determine the max-

imum capacity reduction across all traffic matrices when a set of

failures occurs. Instead, we seek to pre-compute capacity reduction

for each failure pattern, but the number of possible failure patterns

can be prohibitively large. We show, however, that the symmetry

in WAN routers permits the enumeration of a small number of

canonical failure patterns, and any failure pattern is isomorphic to

one of these canonical failure patterns. We develop an algorithm to

determine a canonical failure pattern from any given failure pat-

tern and use it to enumerate all canonical failure patterns. We then

devise easily parallelizable optimization formulations to determine

the effective capacity under failure.

Our third contribution (§4) is to develop compact forwarding
tables for a minimal-upflow trunk wiring and a given failure pattern.

While today’s switches use ECMP, in which traffic is evenly load-

balanced across links, our approach requires a weighted version of

ECMP (called WCMP [40]). Unfortunately, today, the way WCMP

is achieved in chips can inflate forwarding table sizes, and switches
have limited forwarding tables. To meet table size constraints, one

can quantize the weights for different flows, which can potentially

result in lower effective capacity than computed in §3. We show

that it is possible to optimize compact forwarding tables to achieve

minimal-upflow trunk wiring without sacrificing effective capacity
under failures, and provide scalable approximations for this problem.

Our evaluations (§5) show that our approach can mask up to

6 concurrent link or L2 switch failures in a WAN router, while a

baseline wiring strategy that uses ECMP or WCMP cannot even
mask a single failure. Our approach can tolerate failures of up to

half of the L1 switches, but the baseline wiring can only tolerate 1-3

such failures. Random wiring is less effective than our approach,

often having an upflow 2-3× higher, with correspondingly lower

resilience. We also demonstrate that our approach’s resilience does

not require exceeding hardware table limits. Finally, we show that

Min-Upflow 
Trunk Wiring

Effective
Capacity Compact

Forwarding 
Table

Trunk Set Wiring
WCMP
Weight

Failure Pattern

Effective
Capacity

Verification

Figure 4: Overview of our approach.

our optimizations for using extreme trafficmatrices and canonicaliz-

ing failure patterns are effective: the latter can reduce computational

complexity by 3-5 orders of magnitude.

Putting It All Together. Our contributions collectively result in

the processing pipeline shown in Figure 4. The input to the first

stage of the pipeline is a trunk description used to determine a

minimal-upflow wiring. The next stage in the pipeline takes this

wiring, together with a failure pattern, and produces the effective

capacity of theWAN router under that failure pattern. This effective

capacity is then used to optimize compact routing tables.

Implications. As cloud and content providers simultaneously

strive to achieve high utilization, high availability, and low cost,

they need tools that enable them to make these tradeoffs in a

principled way. In the WAN setting, our work shows that it is

possible to mask significant failures (i.e., tolerate failures without
losing capacity). Using our approach, they may also be able to

reduce cost by reducing the number of L2 switches and internal

links (in today’s WAN routers, internal links use expensive optics).

Ethics. This work does not raise any ethical issues.

2 MINIMAL-UPFLOW TRUNKWIRING
In this section, we explore the first challenge: how to find the

minimal-upflow wiring for a set of trunks in a WAN router.

2.1 Background
By virtue of being at the top of the routing hierarchy, WAN routers

carry large volumes of aggregate traffic, often up to terabits per

second. However, low-cost commodity switching chips offer per-

port speeds of 40 Gbps to 100 Gbps. To meet capacity requirements

using these chips, WAN routers must have a large number of ports.

In Google’s B4, routers have 128 or 512 ports. Moreover, the physical

topology of WANs is sparse. WAN routers interconnect data centers

in largemetropolitan areas; since long-distance cables are expensive,

each WAN router usually connects to a small number of other

WAN routers. The sample topology in [25] shows a WAN router

connected to 4-5 other WAN routers.

Thus, multiple ports on a WAN router connect to corresponding

ports on an adjacent WAN router; this collection of physical links is

trunk. All the links in a trunk are of the same capacity (e.g., 40 Gbps)
because all L1 and L2 switches use the same type of switching chip

(e.g., a 16x40 Gbps chip). A router receives traffic on one trunk and

may forward this traffic to one or more other trunks. When doing

so, it evenly splits outbound traffic across all links in the trunk

between the two routers. This uniform splitting enables better uti-

lization of trunk links, and allows a traffic engineering algorithm

to abstract the WAN router as a single node with a fixed capac-

ity [25]. All our techniques in this and subsequent sections model

this crucial constraint. More important, this even split maximizes

early forwarding opportunities.
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Figure 5: Upflow depends both on trunk wiring and traffic ma-
trix.

Operators configure trunks when commissioning a router, and

occasionally reconfigure them afterwards. However, trunk reconfig-

uration happens at timescales of weeks or months, since it requires

manual labor to rewire the links on a trunk.

2.2 Goal and Challenges
Figure 3 shows how carefully wiring the trunks across the external

ports of a WAN router can improve resilience by permitting early

forwarding, which reduces upflow. Upflow (defined more formally

below) is the aggregate traffic sent from L1 switches to L2 switches.

In this section, we ask: How can we design scalable methods to
compute the trunk wiring pattern that minimizes upflow?

This question is challenging because upflow depends not just

on the trunk wiring but also on the trunk-to-trunk traffic matrix
(the (i, j)-th entry in a traffic matrix represents the total traffic from

trunk i to trunk j). Figure 5 shows an example that illustrates this

(we omit the detailed upflow calculations for brevity). The topology

on the left and in the middle have different wiring but the same

traffic matrices, and have different upflow. The middle and the right

topologies have the same trunk wiring but different traffic matrices,

and also have different upflow. Unfortunately, traffic matrices at a

WAN router can change frequently based on changes in applica-

tion demand: numbers from [25] suggest that traffic engineering

(TE) computations run once every 2.4 mins on average. Each such

computation can potentially change the traffic matrix at the router.

At these timescales, it is infeasible to re-wire trunks in response to

each such change because trunk wiring is a manual operation.

The rest of this section describes an optimization formulation,

and associated scaling methods to compute a minimal-upflow trunk

wiring that addresses this challenge by computing a wiring that

minimizes the maximum upflow across all possible traffic matrices.

2.3 Formalizing Upflow
Input and Output. The input to our algorithm is a set

{M1, . . . ,MK } of K trunks. We call this set a trunk set, where
the kth trunk has Mk links, for k ∈ K and K = {1, . . . ,K} is an
index set. The output of the algorithm is a matching (association)

between external ports of the WAN router and links in each trunk

that minimizes upflow (the minimal-upflow trunk wiring). Recall
that WAN router external ports are all connected to L1 switches.

Traffic Matrix. A traffic matrix T = [ti j ]K×K is a K-by-K matrix

containing traffic rate ti j going from a trunk i to a trunk j for
every i, j ∈ K . We normalize the traffic rate ti j by the link capacity

without loss of generality, since every link in a trunk has the same

capacity. We assume tii = 0 for all i ∈ K , i.e., that no traffic received

on a trunk exits on the same trunk. Finally, let T be the set of all

possible traffic matrices for a given trunk set {Mk }.

Defining Upflow. We call the normalized aggregate rate of traffic

sent from L1 switches to L2 switches the upflow. To formalize

upflow, let L1 and L2 be the sets of L1 switches and L2 switches

respectively. In a Clos-basedWAN router, the number of L1 switches

is twice as many as L2 switches. Let P denote the number of external

ports in each L1 switch. As described above, the upflow at each L1

switch depends on the traffic matrix and how trunks connect to

the WAN router. Specifically, letwsk be the number of links from

trunk k wired to switch s for all s ∈ L1 and all k ∈ K , and let w
be a vector of thesewsk ’s. We callw a trunk configuration. Given a

traffic matrix T = [ti j ] ∈ T , the upflow rate (or, simply, upflow) for

traffic from trunk i to j at switch s is

u
i j
s (w,T ) =

[
wsi ti j

Mi
−
ws j ti j

Mj

]
+

for all s ∈ L1, (i, j) ∈ K
2, (1)

where [a]+ = max(a, 0) is a positive projection. This formulation re-

lies on the observation that the total traffic on a trunk is evenly split

across its constituent links. Then, the first term on the right hand

side measures the fraction of incoming traffic on trunk i destined to
trunk j that arrives at switch s . The second termmeasures, at switch

s , the fraction of trunk j’s outgoing capacity for traffic from trunk

i . The two terms together determine how much of the incoming

traffic on trunk i cannot be “early forwarded” (i.e., how much must

traverse L2 switches). It follows then that the total upflow to L2

switches for a given trunk configurationw and a traffic matrixT is:

U (w,T ) =
∑
s ∈L1

∑
i ∈K

∑
j ∈K

u
i j
s (w,T ). (2)

Minimizing Upflow. Our approach tries to minimize total upflow

because, in doing so, it reduces the internal capacity required in the

WAN router, thereby enabling the router to mask many failures of

internal links or L2 switches. Because upflow depends on the traffic

matrix, we attempt to find that trunk wiring configurationw that

minimizes the maximum upflow across all possible traffic matrices:

min

w ∈W
max

T ∈T
U (w,T ), (3)

W is a feasible set of wiring constraints, defined as:

W =

{
wsk ∈ Z

|L1 |×K
+ :

∑
k ∈K wsk ≤ P for all s ∈ L1∑
s ∈L1

wsk = Mk for all k ∈ K

}
,

where Z+ a set of non-negative integers. The first constraint en-

sures that the wiring at a switch does not exceed the number of

external ports P , and the second ensures that each link in every

trunk connects to a port.

2.4 Scaling
Extreme Traffic Matrices. Unfortunately, this formulation is in-

tractable because there can be infinitely many traffic matrices in T .
We observe that there is a simpler solution: it suffices to examine a

smaller set of extreme traffic matrices, denoted by E, rather than

the full set of all possible traffic matrices T . To understand why,

consider that when a WAN router is non-blocking, traffic rates,

going in and out of the router, are only limited by trunk capacity

(the aggregate rate of trunk’s links). Since each link has the same
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Figure 6: Traffic set and extreme traffic set.

capacity, we can represent each link as having unit capacity, so the

number of links in each trunk constrains the space of all possible

traffic matrices T :

T =

T ∈ RK×K+ :

∑
j ∈K ti j ≤ Mi for all i ∈ K∑
i ∈K ti j ≤ Mj for all j ∈ K

tii = 0 for all i ∈ K

 , (4)

where R+ is a set of non-negative real numbers. The set T bounds

all feasible traffic matrices, as shown in Figure 6.

This set is a convex polytope, because constraints in Equation 4

are affine functions [6, 9]. For example, for a WAN router with a

trunk set (2, 2, 4), 6 affine constraints define T . One of them is

t12 + t32 ≤ 2 and implies the total (normalized) rate to the second

trunk is at most 2, even though the third trunk can send at most 4.

Using Extreme Traffic Matrices. The vertices of this convex
polytope represent the extreme traffic matrix set E (Figure 6). In

§A.1, we prove that it suffices to use E instead of T in our opti-

mization formulation of Equation 3, as follows:

min

w ∈W
max

T ∈E
U (w,T ). (5)

We can transform this formulation into an MILP problem, and

use an off-the-shelf MILP solver for reasonable problem sizes, e.g.,
128-port router with 4 trunks (§5). Larger WAN routers, or those

with more trunks, need other scaling techniques, described next.

Symmetric Trunk Sets. For some trunk sets, we can obtain the

minimal-upflow trunk wiring without using an MILP solver. Con-

sider a WAN router with 128 ports and 16 L1 switches, and four

trunks with (16, 32, 32, 48) links respectively. Now, suppose we wire

each L1 switch with one link from the first trunk, 2 each from the

second and third trunk, and 3 from the fourth trunk. It turns out

that this trunk configuration achieves zero upflow across all traffic

matrices. More generally, we say that a trunk set is symmetric if
the number of links in each trunk is a multiple of the number of

L1 switches. Specifically, a symmetric trunk set hasMk = ak |L1 |

when ak is some positive integer for every k ∈ K . In §A.2, we

prove that the upflow for any symmetric trunk set is zero across

any traffic matrix, so in these cases, computing upflow does not

need Equation 5.

Approximating Minimal-Upflow. As the size of a WAN router

increases, the number of L1 switches |L1 | increases. Also, a 128-

port WAN router could serve more than 5 trunks. These two factors

represent scaling challenges since the number of auxiliary con-

straints in Equation 5 increases as O
(
|L1 | 2

K 2

)
(see §A.3 for a

proof), which can cause solvers to exceed memory limits.

We have developed an approximation with better scaling behav-

ior based on two ideas. The first is to approximate all the extreme

traffic matrices by T̂ , a matrix whose entries are element-wise max-

ima across all the extreme traffic matrices. The second applies our

observation that the minimal-upflow wiring usually tries to evenly

distribute links of a trunk across all L1 switches: we only explore

trunk configurations
ˆW such that the number of links from a trunk

assigned to two different L1 switches differ by no more than 1.

§A.4 lists this formulation in which the number of auxiliary

constraints scales as O(|L1 |K
2). §5 shows that this formulation

yields a wiring that match the optimal wiring obtained from the

formulation in Equation 5 for most of the trunk sets we have been

able to evaluate.

3 EFFECTIVE CAPACITY UNDER FAILURE
In this section, we discuss how to define, and compute, the effective

capacity of a WAN router under failures.

3.1 Background
Minimizing upflow can make a WAN router resilient to failure, but

it is important to quantify this resilience. To do so, we compute the

effective capacity of the WAN router under (concurrent) failure of

components. This effective capacity is an input to traffic engineering

(TE) algorithms, such as those used by Google’s TE Server [25],

which use the effective capacity to route traffic demands based on

application needs (e.g., latency, traffic demand). It is also an input

to our next step, computing compact forwarding tables (§4).

At run time, when a set of failures occurs in a WAN router, it

may be possible to compute an estimate of the effective capacity,

required for TE calculations. However, it is desirable in our setting

to pre-compute this effective capacity for as many failure patterns

as possible, because while computing the effective capacity of a

given failure pattern is inexpensive (as we show below), the next
step of our approach, computing compact forwarding tables (§4)

requires an MILP formulation that can delay convergence of TE

algorithms if run online. To ensure fast TE convergence [19], we

pre-compute effective capacity and routing tables (in §4).

3.2 Goal and Challenges
Our goal in this section is to determine, for any given trunk con-

figuration, the effective capacity when multiple internal links, or
L1 or L2 switches fail concurrently. This problem is challenging

because, if we want to pre-compute this effective capacity, we have

to explore all possible concurrent failure scenarios, which increase

exponentially. The second challenge is to define effective capacity

precisely. A WAN router, by design, is non-blocking: it can sup-

port any possible traffic matrix. When failures occur, it may not be

possible to support some traffic matrices.

We describe, for ease of exposition, separate algorithms for de-

termining effective capacity (a) under L2 and internal link failures

and (b) under L1 failures. This is because the characteristics of these

failures are different: an L1 failure disables some ingress and egress

trunk links, but a link failure or an L2 failure does not. We defer

the discussion of L1 failures to §A.7. In §A.8, we describe a com-

bined algorithm that estimates effective capacity under arbitrary

combinations of internal link and L1/L2 switch failures.

At a high-level, to pre-compute the effective capacity under L2

and internal link failures, our approach enumerates all possible

failure scenarios, and for each computes the effective capacity (and

routing tables (§4)).
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A BC A BC C C

A WAN router with a failed link

A BC A BC C C

Link-failure pattern

AC AC BC BC

Isomorphic group by canonical form

Figure 7: Link-failure model and canonicalization.

3.3 Modeling Link and L1 Switch Failures
When concurrent internal links fail, we model this as a graph G in

which all the L1 and L2 switches are nodes and only the failed links

are edges in the graph. Figure 7 shows an example with a single

link failure. This graph represents a failure pattern. This approach
can also model L2 switch failures; when an L2 switch fails, we mark

all incident internal links in that switch to have failed. The total

number of possible patterns is 2
|L1 |× |L2 |

.

Graph Canonicalization and Isomorphism. To address this ex-
ponential complexity, we leverage the symmetry in WAN router

topologies, and use graph canonicalization [29] which reduces a

graph to an isomorphic canonical form. Two graphs are isomorphic
when they are permutations of one another. For example, the mid-

dle and right failure patterns in Figure 7 are isomorphic because one

can swap the rightmost L1 nodes (and L2 nodes) of either pattern

to arrive at the other pattern. A canonical form of a graph G is a

graphψ (G) that is isomorphic to G, such that every graph that is

isomorphic to G has the same canonical form as G, and any two

non-isomorphic graphs have different canonical forms. Canonical-

izing failure patterns can result in fewer patterns to search and is

crucial to scaling the pre-computation of effective capacity.

APolynomial TimeAlgorithm.While it is not knownwhether

polynomial time algorithms exist for general graph canonization,

we have developed a polynomial time algorithm for Clos topologies.

Our algorithm leverages the fact that Clos topologies are bipartite.

Given a failure graph, the algorithm reorders links and nodes so that

all links are on the left (to the extent possible). This transformation

results in a canonical failure pattern. For example, in Figure 7, if

there is a single failed link between the second L1 switch and the

second L2 switch, by reordering the first and second L1 (respectively

L2) switches, we can arrive at the canonical failure pattern where

the failed link is between the first L1 switch and the first L2 switch

(the pattern shown in Figure 7). From this example, it is tempting

to assume that all single link failures are isomorphic, by symmetry.

But this is not the case, because isomorphism must also take into
account the trunks to which external links belong. For example, the

failure pattern in Figure 7 is not isomorphic to one between the 3rd

L1 switch and the 2nd L2 switch. Our canonicalization algorithm

(§A.5), takes these dependencies into account.

With this algorithm, suppose we wish to determine the effective

capacity for a failure pattern G: we first compute ψ (G), then use

the pre-computed effective capacity forψ (G). We now discuss how

to compute effective capacity.

3.4 Effective Capacity
Given a trunk set, T is the set of all possible traffic matrices for

that trunk set. By design, a WAN router (in the absence of failure)

is non-blocking for all T ∈ T . One way to define effective capacity

is to enumerate the set of traffic matrices that the WAN router can

support for each failure pattern. This is computationally challeng-

ing, and also complicates traffic engineering algorithms that must

constrain their path computations to match these traffic matrices.

For this reason, we use a simpler definition of effective capacity.

Consider the set of all trafficmatricesθT : every trafficmatrixT ∈ T
is scaled element-wise by a scaling factor θ ∈ [0, 1]. We say that

the effective capacity of the WAN router is the largest θ such that

the router is non-blocking for every matrix in θT . Defining effective
capacity this way allows us to keep the TE algorithm unchanged; we
can simply scale the capacity of each trunk incident on the WAN

router by θ and run the TE algorithm to generate the paths.

Computing Effective Capacity. We obtain θ by solving an over-

loaded multicommodity flow problem [3, 8]. However, in formulat-

ing this, we need to be consistent with current practice in WANs,

which splits traffic evenly across all links in a trunk (§2). Thus, the

formulation must constrain the problem to ensure uniform splitting

of traffic both on incoming traffic and on outgoing traffic. Equally

important, we must find the effective capacity across all possible

traffic matrices and all possible failure patterns. The input to the

formulation includes a trunk set {Mk }, a trunk configuration {wsk },

a traffic set T , and a set of link-failure patterns F .

The output is the effective capacity θ , defined using a min-max

optimization objective:

min

F ∈F
min

T ∈T
max

θ ∈Θ(F ,T )
θ where Θ(F ,T ) =


θ :

∑
a∈L1

r
i j
ab =

∑
a∈L1

r
i j
ba ,∀b ∈ L2, (i, j) ∈ K

2∑
b ∈L2

r
i j
ba + θti jwai/Mi =

∑
b ∈L2

r
i j
ab + θti jwaj/Mj

,∀a ∈ L1, (i, j) ∈ K
2∑

(i, j)∈K2 r
i j
ab ≤ I [(a,b) < F ]

,∀(a,b) ∈ L1 × L2 ∪ L2 × L1

r
i j
ab , r

i j
ba ∈ R+ ,∀a ∈ L1,b ∈ L2, (i, j) ∈ K

2

θ ∈ [0, 1]


(6)

This formulation finds the smallest θ across every pair of traffic

matrix and failure pattern. For each pair, it computes the largest

θ satisfying the constraints in Θ(F ,T ). The first two constraints

ensure flow conservation at L2 switches and L1 switches. The sec-

ond one also imposes uniform splitting of ingress and egress traffic

on each trunk. The third describes the link capacity under a given

failure scenario, where I [·] is an indicator function. The last two

constrain the range of decision variables.

As in §2, this formulation is also intractable because the traffic

matrix set T is infinite. Here too, we can leverage the fact T forms

a convex polytope, and use the extreme traffic matrices in this

polytope to compute effective capacity. We prove this in §A.6.

It follows then that we can find the effective capacity by con-

sidering every pair of (a) canonical failure pattern F ∈ F and (b)

extreme traffic matrixT ∈ E. For each such pair, we solve the linear
program maxθ ∈Θ(F ,T ) θ . Using the canonical failure patterns and

the extreme traffic matrices reduces the complexity of the optimiza-

tion significantly. Furthermore, we can parallelize the computation

of effective capacity for each canonical pattern and each extreme

traffic matrix, so this computation scales well. We defer the discus-

sion of L1 switch failures and arbitrary combinations of failures to

§A.7 and §A.8 respectively.
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Figure 8: WCMP routing uses a multipath table. In today’s
switches, these tables have limited sizes.

4 COMPACT FORWARDING TABLES
In this section, we describe how we derive compact forwarding

tables to minimize upflow in the presence of failures.

4.1 Background
As described in §1, WAN routers today use ECMP [20] to forward

traffic: each L1 switch splits incoming traffic evenly across all links

to L2 switches. However, our approach may require an uneven

traffic split because, at an L1 switch, some fraction of incoming

traffic may be subject to early forwarding, while the rest of the

traffic needs to traverse L2 switches.

Prior work has described a weighted version of ECMP, called

WCMP [40], which assigns weights in proportion to the desired

traffic split ratio. Today’s switches implement WCMP using a mul-
tipath table (Figure 8): they assign each split entries in this table

in proportion to its weight. For example, if tunnel A should split

traffic across tunnels B and C as 3 : 2, the multipath table will have

5 entries as shown. The switch hardware will evenly split the traffic

across these 5 entries, achieving the desired 3 : 2 traffic split.

Unfortunately, modern switches have limited multipath table

entries, and arbitrary weight ratios can exceed table capacity. For

example, a weight ratio of two relatively prime numbers 233 : 767

requires 1000 entries.

4.2 Goal and Challenges
Motivated by this, we design compact forwarding tables by minimiz-

ing the number of entries needed for multipath tables for a given

trunk configuration, a failure pattern, and effective capacity.

Our design must address two challenges. First, it must preserve

early forwarding opportunities in order to minimize upflow. (One

way to compact the forwarding table is to adjust weights at the cost

of increased upflow, but this would negate the benefits of computing

the minimal-upflow wiring in §2). Second, the resulting forwarding

table must ensure that the WAN router remains non-blocking across
all traffic matrices; computing and modifying WCMP weights in

response to trafficmatrix changes is infeasible both computationally

and operationally since traffic matrices change quickly over time.

4.3 Compacting Forwarding Table
Input and Output. The input to our algorithm is a trunk wiring

configuration {w} (from §2), a failure pattern F and effective ca-

pacity (from §3). The output is a set of integer WCMP [40] weights

that ensures non-blocking behavior under any traffic matrix for

that failure pattern and uses the fewest multipath entries.

Decoupling Traffic Matrices from WCMP Weight Calcula-
tions. Conceptually, it seems difficult to compute WCMP weights

that would ensure non-blocking behavior across all traffic matrices.

However, given a trunk configuration {w}, the proportion of traffic

sent from an L1 switch to an L2 switch, or vice versa, for a given

pair of trunks, is independent of the traffic matrix. To understand

why, consider the following two quantities defined for traffic from

trunk i to trunk j:

u
i j
s (w,T ) = ti j

[
wsi/Mi −ws j/Mj

]
+
= ti jû

i j
s

d
i j
s (w,T ) = ti j

[
ws j/Mj −wsi/Mi

]
+
= ti j ˆd

i j
s .

The first quantity is the upflow volume from switch s , for a given
traffic matrix T and a given wiring {w}: i.e., it measures the total

volume of traffic at switch s sent up to L2 switches. The second

quantity is the downflow volume at s: the total volume at s received
from L2 switches forwarded on a trunk j at switch s .

Notice that both of these quantities have two components: a

traffic matrix component ti j and a (respectively) upflow fraction ûi js
or a downflow fraction ˆd

i j
s . Our key insight is that WCMP weight

calculations can be designed independent of traffic matrix by basing
the weight calculations on upflow and downflow fractions. (As an
aside, a TE algorithm does not compute a traffic matrix but routes

tunnels (or tunnel groups [25]) on trunks. Thus, trunk i might

carry traffic for multiple tunnels. For some tunnels, traffic will exit

the WAN router using trunk j. We have abstracted this detail by

describing the total volume of such traffic using the term ti j ).

Minimizing Multipath Table Entries. To minimize multipath

table entries we observe that, at a given switch s , for traffic between

trunks i and j , if the upflow fraction is non-zero, there cannot be any
downflow. This is by design: if there is upflow, it means that all the

links of trunk j at s are used for early forwarding, so there is no

capacity left for traffic from other switches to exit on trunk j at s .

Flow Counts. Thus, at each switch we can define a quantity

called the flow count vi js as follows:

v
i j
s =


û
i j
s /αi j , û

i j
s > 0

ˆd
i j
s /αi j , ˆd

i j
s > 0

0 , otherwise

∀s ∈ L1, (i, j) ∈ K
2.

which is either the upflow fraction or the downflow fraction de-

pending on the trunk wiring. For a reason described below, we scale

these fractions by the fractional greatest common divisor (FGCD)

αi j of each traffic pair (i, j) across L1 switches, so that allv
i j
s values

are integers, hence the name flow count.

An Example. Figure 9 illustrates this idea for a trunk pair (C,A)
and two different values of traffic between these trunks tCA. In the

example on the left, the incoming traffic on the rightmost L1 switch

is 1 unit, and the switch forwards 3/4ths to the L2 layers (early

forwarding the rest), which is evenly distributed across the other

three L1 switches. In the example on the right, the incoming traffic

is half that. Despite this, the upflow/downflow fractions and the

flow counts are the same in all cases.

Now, suppose at switch s the flow count for trunk pair (i, j)
corresponds to an upflow. Consider two other switches s1 and s2
have (downward) flow counts. To compute the WCMP weights

across the network, we solve an optimization that determines how

to route these (upflow) flow counts from L1 switches (e.g., s) to L2

switches, and subsequently from L2 switches to the corresponding

L1 switches (e.g., s1 and s2) which have “available” downward flow

counts.
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Figure 9: Fraction of different volumes is the same and is con-
verted to flow count by FGCD.

Figure 10: Compact routing does not assign unnecessary weights
to multiple ports.

The key intuition for why our approach compacts routing tables

rests on the observation that, when “matching” the upflow flow

counts to the downflow flow counts, we can avoid splitting the

traffic unless not doing so would reduce the effective capacity. Fig-

ure 10 illustrates this and shows which switch ports have associated

WCMP weights for forwarding traffic from B to A. Without our

approach (left), the second L1 switch splits its traffic (i.e., divides
its upflow) on both internal ports. This assignment uses 2 entries

in the multipath table. Instead, the compact routing (right) realizes

that this multiple-interface assignment is unnecessary and only

uses the port connected to the first L2 switch, resulting in fewer

WCMP entries.

The Optimization Objective. Thus, at a high-level, our opti-

mization objective is to match the upflow and downflow counts,

subject to the effective capacity constraint. To formalize this, let

x
i j
ba represent the total flow count from L2 switch b to L1 switch

a for trunk pair (i, j). Let’s define X
i j
b as the sum of these values

across all L1 switches a. We make two observations. First, that X
i j
b

is proportional to the number of multipath table entries at L2 switch
b for trunk pair (i, j). To see why, consider a trunk pair (i, j) whose

X
i j
b value is 10. Now, assuming that switch b forwards these 10 flow

counts to L1 switches, any split with integer weights of these X
i j
b

flow counts can at most be 10. Second, we observe that L2 switches

will need more WCMP entries in our approach than L1 switches for

internal links (overall, L1 switches need more entries because they

need to handle egress links as well, §5.4). An L1 switch may not see

traffic for all trunk pairs (i, j), but an L2 switch may see traffic for

all trunk pairs (i, j) with non-zero upflow (because, in general, an

L1 switch must distribute the upflow across L2 switches to ensure

the effective capacity constraint).

These observations motivate our optimization objective: to find

flow count assignments x
i j
ba and x

i j
ab which minimize maximum

total flow count at an L2 switch, across all possible traffic matrices,

for a given failure pattern. We present the optimization formulation

in §A.9. In §A.9, we also discuss an important detail: computing

WCMP weights for egress links in L1 switches (our formulation

focuses on weight assignments for internal links).

Scaling. To this formulation, we apply two scaling techniques

discussed in previous sections. First, we replace every occurrence

of the infinite traffic matrix set T with the finite extreme traffic

matrix set E, resulting in an MILP problem solvable by an off-the-

shelf solver. Second, we run the optimization only for canonical

failure patterns.

Improved Scalingwith anApproximate Solution. Even so, our
formulation does not scale well to 512-port routers. To address

this, we use the same approximation technique as in §2: instead

of iterating over all extreme traffic matrices, we evaluate for one

matrix whose elements are the element-wise maximum across all

extreme matrices in E.

5 EVALUATION
In this section, we compare the resilience of our approach to other

approaches both for 128 and 512-port switches, explore the efficacy

of our routing table compaction, and quantify the benefits of our

techniques to scale the computations
1
.

5.1 Methodology
Goal. We compare our approach against a baseline wiring scheme

that sequentially assigns external ports to each trunk one by one.

For example, in a 128-port WAN router with 16 L1 switches each

with 8 egress ports, a trunk set (8, 32, 32, 56) would be assigned

as follows: the first trunk connects to all the egress ports on the

leftmost L1 switch, the next trunk connects to egress ports in the

next 4 L1 switches, and so on. For this baseline wiring, we evaluate

both ECMP (which splits traffic from L1 to L2 switches evenly) and

WCMP (which weights the traffic split using the algorithm in §4).

We also compare against a random wiring that randomly assigns

external ports to trunks. For this strategy as well, we evaluate ECMP

and WCMP based routing. Overall, we explore a space defined by

two dimensions: a routing strategy dimension consisting of two

alternatives (ECMP andWCMP), and a wiring dimension with three

alternatives (our approach, baseline wiring, and random wiring).

Metrics and Methodology. To understand the efficacy of our ap-

proach, we use three metrics: upflow (§2), effective capacity (§3),

and table size (§4). We also quantify the benefits of our optimiza-

tions: finding extreme traffic matrices, the upflow approximation,

failure pattern canonicalization, and routing approximation. Our

evaluations use two sizes ofWAN routers. In a 128-portWAN router,

each switch has 16 ports, and there are 16 L1 and 8 L2 switches.

For this router, we evaluate all possible trunk sets with four trunks

where the number of links in each trunk is divisible by 8. There are

34 such trunk sets, shown on the x-axis in Figure 11. In a 512-port

WAN router, each switch has 32 ports, and there are 32 L1 switches

and 16 L2 switches. For this router, we evaluate all possible trunk

sets with 5 trunks (there are 480 such sets), where the number of

links in each trunk is divisible by 16.

Implementation.Our experiments use the cdd [16] library to gen-
erate the extreme traffic set. We use Gurobi [28] to solve all LP and

MILP problems, and Open MPI [33] to parallelize our computations.

1
Our code is available at https://github.com/USC-NSL/Highly-Available-WAN-Router.
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Figure 11: Upflow in a 128-port router with 4 trunks.

5.2 Resilience: 128-port WAN Router
Figure 12 (left) quantifies resilience by showing the effective capac-

ity for our approach over different trunk sets, under link failure

and L2-switch failure (§3) and under L1-switch failure (§A.7).

Upflow. To understand the results Figure 12, it is important to first

understand the efficacy of minimal-upflow trunk wiring. Figure 11

shows the upflow across all the trunk sets in a 128-port router.

We use Equation 5 to compute upflow for our approach, random

wiring, and baseline wiring. Baseline wiring does not employ early

forwarding, but random wiring does. Our optimal wiring approach

leads to the lowest upflow rate in all scenarios because it spreads

links from the same trunk across L1 switches and maximizes early

routing opportunities to minimize upflow. Trunk sets where each

trunk has a multiple-of-16 links have no upflow, a consequence

of Theorem A.2. By comparison, baseline wiring has an upflow

that is sometimes 10× higher. With baseline wiring, the upflow can

vary with trunk set. Some trunk sets have more constrained traffic

matrices than others: for example, in the trunk set (8, 8, 8, 104) the

largest trunk can send at most 24 (normalized) units of traffic even

though the trunk capacity is 104. Finally, random wiring yields

upflow (averaged over 100 random wirings for each trunk set) that

is 2-3× worse than optimal.

Link Failures. The upper left plot of Figure 12 plots the resilience
of trunks across link failures. The resilience varies by trunk set,

but instead of plotting resilience across all trunk sets, we group

them into 4 classes by their upflow: these classes demonstrate

qualitatively different behaviors.

Our approach is able to completely mask up to six link concurrent
link failures across all trunk sets, and the effective capacity only

drops below one after the 7
th

failure. This is because the maximum

upflow across all trunk sets, in Figure 11, is well below 32. In a

128-port WAN router, there are 16 L1 switches and 8 internal links

between a pair of L1 and L2 switches. Each switch has at most

2 units of upflow (since the total upflow is less than 32), which

requires 2 links to carry the upflow (per L1 switch), so the router

can tolerate up to 6 failures.

There are 4 classes with respect to link failures. Trunk sets with

zero upflow always have an effective capacity 1 under any link

failure. Any trunk set with upflow in (0, 16] starts to degrade after

7 link failures. Similarly, any trunk set with upflow in (16, 32] starts

to degrade after 6 link failures. These trunk sets differ slightly in

the drop in effective capacity resulting from the 7
th

failure because

of the way the trunk sets are configured. Finally, every trunk set

with non-zero upflow has effective capacity 0 under 8 failures: no

0 1 2 3 4 5 6 7 8
Number of failures

0.0
0.2
0.4
0.6
0.8
1.0

Ef
fe

ct
iv

e 
ca

pa
cit

y

Internal link failure

Upflow = 0
Upflow in (0, 16]
Upflow in (16, 32)
Upflow = 32

0 1 2 3 4 5 6 7 8
Number of failures

0.0
0.2
0.4
0.6
0.8
1.0

Ef
fe

ct
iv

e 
ca

pa
cit

y

L2 switch failure

Upflow = 0
Upflow in (0, 16]
Upflow in (16, 32)
Upflow = 32

0 2 4 6 8 10 12 14 16
Number of failures

0.0
0.2
0.4
0.6
0.8
1.0

Ef
fe

ct
iv

e 
ca

pa
cit

y

L1 switch failure
Trunk size = 8
Non-uniform, Trunk size = 8
Uniform
Non-uniform, Trunk size > 8

0 1 2 3 4 5 6 7 8
Number of failures

0.0
0.2
0.4
0.6
0.8
1.0

Ef
fe

ct
iv

e 
ca

pa
cit

y

Internal link failure
All

0 1 2 3 4 5 6 7 8
Number of failures

0.0
0.2
0.4
0.6
0.8
1.0

Ef
fe

ct
iv

e 
ca

pa
cit

y

L2 switch failure
All

0 2 4 6 8 10 12 14 16
Number of failures

0.0
0.2
0.4
0.6
0.8
1.0

Ef
fe

ct
iv

e 
ca

pa
cit

y

L1 switch failure
Trunk size = 8
Trunk size = 16
Trunk size = 24
Trunk size = 32

Figure 12: Minimal-upflow wiring (left) vs. Baseline wiring with
WCMP (right).
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Figure 13: Baseline wiring with ECMP routing.

128-port WAN router can ensure non-blocking behavior under the

worst-case failure pattern with 8 concurrent link failures (which

occurs when all uplinks on an L1 switch fail).

By comparison, baseline wiring with WCMP cannot mask a single
failure (top right figure in Figure 12). The effective capacity in this

case is independent of the trunk set. The WAN router capacity

degrades gracefully under failure: every link failure drops capacity

by 1/8th. Baseline wiring with ECMP performs worse than baseline

wiring with WCMP. Table 1 shows the resilience of baseline wiring

with ECMP for up to four failures: effective capacity drops by 50%

with a single failure, and by nearly 3/4th with 4 failures. While

it might be tempting to conclude that routers should implement

WCMP to increase failure resilience, we note that an alternative

strategy which treats each link failure as the failure of the corre-

sponding L2 switch has the same resilience as baseline wiring with

WCMP, so there is really no incentive to deploy WCMP for link

failure resilience.

L2 Switch Failures. Resilience to L2-switch failures (center left of

Figure 12) is identical to that for link failures. An L2 failure removes

1 link from each L1 switch, so our upflow-based categorization still

applies. Here too, there are four classes categorized by the value of

upflow, and baseline wiring with WCMP (middle right of Figure 12)
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Figure 14: Effective capacity of random wiring. Trunk sets are
selected from the categories of minimal-upflow wiring.

and ECMP (Figure 13) provide no masking and have identical behav-

ior: with each L2 failure, capacity drops by 1/8th. Random wiring

with WCMP (Figure 14), is more resilient than baseline wiring, but

has lower effective capacity than minimal-upflow wiring across

all failure configurations. For example, minimum upflow wiring

ensures full effective capacity with 6 concurrent failures when total

upflow is 32. However, random wiring, for the same setting only

has an effective capacity of 0.3. The effective capacity of random

wiring with link failure is identical to L2 switch failure, so we have

omitted a description of the former.

L1 Switch Failures. No approach can mask L1 failures, since these

reduce trunk capacity in addition to internal capacity. However, our
approach degrades much more gracefully than competing approaches,
but the behavior depends on the trunk set configuration. Our 34

trunk sets fall into four classes (lower left of Figure 12) with quali-

tatively different behavior. These sets depend on two factors: the

size of the smallest trunk in the trunk set (either 8, or larger), and

whether the minimal-upflowwiring (§2) wires the trunks uniformly

across the L1 switches or not. Non-uniform wiring introduces a

little asymmetry with a slightly different resilience.

When theminimum trunk size is 8, because our approach spreads

the links of these trunks across 8 L1 switches, they can tolerate up to

8 L1 switch failures, with each failure degrading capacity by 1/8th,

as shown by the line “Trunk size = 8”. With non-uniform wiring

with a minimum trunk size of 8, our approach can tolerate up to 7

failures resulting from non-uniform spreading of the wires (only

7 L1 switches connect to the 8-wire trunk). For a similar reason,

trunk sets with a minimum of 16 links in each trunk can tolerate

up to 15 L1 switch failures, with capacity drops of around 1/16th at

each step (there are slight variations resulting from non-uniformity

described earlier).

By contrast, baseline wiring with ECMP (Figure 13) or WCMP

(bottom right of Figure 12) can only tolerate up to 4 L1 switch fail-
ures, and, for some trunk configurations, may have zero capacity
even with a single L1 switch failure. Finally, random wiring with

WCMP (Figure 14), performs generally worse than minimal-upflow

wiring: the latter generally degrades gracefully, but the capacity

degradation in the former is more dramatic (e.g., for the uniform
wiring case).

Simultaneous L1 and L2 Switch Failures. Our approach can

handle simultaneous failures of links, L1 switches, and L2 switches

(§A.8). To demonstrate this, Figure 15 shows effective capacity

resulting from simultaneous failure of L1 and L2 switches for a

specific trunk set in the L2-category “Upflow in (16, 32)” and L1-

category “Non-uniform, Trunk size > 8”. The effective capacity is a

combination of the results from those categories: for instance, the

L1 failure
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Figure 15: Effective capacity of trunk set (16, 24, 24, 64) under
simultaneous L1 and L2 switch failures.
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Figure 16: Effective capacity under L1 and L2 failures for a 512-
port router.

dip in effective capacity for the 7th L2 switch failure in Figure 12 is

also visible in this plot.

5.3 Resilience: A 512-port WAN Router
Figure 16 shows the effective capacity of 512-port router trunk sets

under L1 and L2 switch failures. For this router, there are 480 trunk

sets. In computing the effective capacity, we use the approximation

formulation (§2) to compute the minimal-upflow wiring. That we

are able to obtain these results demonstrates the scalability of our

approximation: in §5.5, we quantify the optimality gap introduced

by the approximation. We have also computed effective capacity for

random wiring for a 512-port router. These results are qualitatively

similar to those for the 128-port router, so we omit them for brevity.

L1 Switch Failures. Our trunk sets exhibit three qualitatively dif-

ferent classes of behavior. These classes depend on two factors: the

minimum trunk size in a trunk set, and whether the optimal wiring

spreads a trunk’s links uniformly across L1 switches or not. When

trunks are uniform, degradation is graceful, but, for obvious rea-

sons, when the minimum trunk set size is 16, the trunk set can only

tolerate up to 16 failures. With non-uniformwiring, the degradation

is steeper for the first few failures as a result of asymmetry.

L2 Switch Failures. As with the 128-port case, we observe four

qualitatively different types of behavior with L2 switch failures.

Every trunk set with zero upflow can mask all L2 switch failures.

Every trunk set having upflow in (0, 32] requires one internal link

per L1 switch to carry traffic, so can sustain 15 L2 switch failures.

Every trunk set with 64 units of upflow requires 2 L2 switches

to carry traffic, so the effective capacity becomes 0.5 when 15 L2

switches fail. For trunk sets with upflow in (32, 64), the effective ca-

pacity is slightly better than the 64-unit upflow case due to slightly

lower upflow.

Link Failures. As with the 128-port router, we find that the re-

silience under link failure is similar to that under L2 switch failures,

so we omit this graph for brevity.
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Baseline Random Optimal Optimal

Router ECMP ECMP ECMP WCMP

No failure No failure No failure (No, L1, L2)

128 ports 48 186 192 (64, 388, 64)

512 ports 128 640 640 (346, 3310, 346)

Table 2: Maximum number of multipath entries at any switch,
across all trunk sets.

5.4 Compact Routing Tables
We now show that our routing table compaction technique (§4)

results in tables that do not exceed hardware routing table limits. To
do this, we compute, for the two sizes of routers, the largest table

size at any switch, across all trunk sets, for any combination of L1

failures, and (separately) for any combination of L2 failures that

are completely masked. For the 512-port router, we compute the

tables using the scaling approximation (§4).

Table 2 shows the table sizes. For calibration, the hardware limit

on themultipath table inmodern switches is 65K [32]. Our approach

(last column) uses at most 388 and 64 entries for a 128-port router

and at most 3310 and 346 entries for a 512-port router under L1 and

L2 failures. We also see that the routing table sizes are relatively

insensitive to L2 failures because the optimization assigns WCMP

weights sparsely to minimize table sizes: every L1 switch sends

traffic over a few links to L2 switches, and other links that do not

carry traffic are not assigned WCMP weights. So, when a link with

non-zero weight fails, our algorithm moves, to another active link,

the weights assigned to that link without increasing table sizes.

ECMP with baseline wiring in the absence of failures (first col-

umn) uses fewer entries, because links of the same trunk connect

to the same L1 switch, which permits grouping of entries (an L2

switch only needs 1 entry per cross-trunk pair and per L1 switch).

The grouping is less effective for arbitrary wiring (two middle

columns). Random wiring requires 186 and 640 entries, while the

minimal-upflow wiring requires 192 and 640 entries for 128-port

and 512-port routers. Our routing optimization compacts the en-

tries (in the last two columns) from 192 to 64 for a 128-port router

and from 640 to 346 for a 512-port router in the absence of failures

by assigning weights sparingly.

5.5 Impact of Optimizations
The Importance of Routing Optimizations. Minimal-upflow

wiring, together with early forwarding, alone does not provide high

resilience; ourWCMP routing is also necessary. To demonstrate this,

we conduct an experiment on a 128-port router with no failures. For

minimal-upflow wiring, we configure routing tables to use early

forwarding when possible, but use ECMP routing to split traffic

equally to L2 switches for upflow traffic and egress ports for early

forwarding traffic. Figure 17 shows the resulting effective capacity

across all trunk sets. Our minimal-upflow wiring together with

compact routing tables achieves an effective capacity of 1 across all
trunk sets (not shown in the figure). However, the simpler routing

technique that uses ECMP is able to achieve full capacity for only

5 of the trunk sets, whose upflow is zero, with minimal upflow

wiring, and much lower effective capacity with random wiring.

Canonicalization. Canonicalizing failure patterns often reduces

the number of link failures by orders of magnitude. Figure 18 shows

the average numbers of canonical forms across our 34 trunk sets
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Figure 17: Effective capacity constrained by ECMP routing under
no failure.
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Figure 18: The benefits of canonicalization.
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Figure 19: Upflow in a 512-port router with 5 trunks.

Trunk Set Optimal Approximation

(8, 8, 56, 56) 9 min. 0.21 sec.

(24, 24, 32, 48) 38 min. 0.16 sec.

(96, 96, 96, 112, 112) – 0.88 sec.

(96, 96, 96, 96, 128) – 0.63 sec.

Table 3: Micro benchmark of wiring approaches.

under different numbers of link failures (y-axis is in log scale). With

7 failures, the reduction is a 5 order of magnitude, from 10
11

to 10
6
.

Upflow Approximation. For the 128-port router, our upflow ap-

proximation (§2) matches the optimal upflow computed using the

formulation of Equation 5 for all but 4 of the trunk sets (Figure 11).

For those 4 cases, the differences are extremely small. To demon-

strate that our approximation helps compute upflow with larger

WAN routers and trunk sets, Figure 19 shows the upflow across all 5-
trunk trunk sets (480 such combinations) for a 512-port WAN router.

The resulting upflow is 20-30× lower than the baseline wiring.

Finally, our approximation noticeably speeds up upflow computa-

tion (Table 3). For The 4-trunk cases, the formulation of Equation 5

can take up to 38 min to find the minimal upflow using a multi-core

desktop (20 cores 2 Intel Xeon CPU E5-2650 @ 2.30GHz), while

our approximation can compute this in a fraction of second. It can

also compute upflow for some 5 trunk configurations when the

formulation of Equation 5 does not even complete.

Large providers may have resources to compute minimal-upflow

wiring using Equation 5. When using a cluster of say 500 multicore

machines, the computation for 4-trunk trunk sets can complete

in 10s of minutes because the number of extreme traffic matrices

range from 200 to about a 1000 (Figure 20).

Computing Effective Capacity. Computing effective capacity of

a link failure pattern takes 30 seconds on a single core of a multi-

core machine. This means that the total time largely depends on the
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Figure 20: Extreme traffic matrices of a 128-port router.
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Figure 21: Performance gap of the approximate routing.

number of failure patterns.We can estimate this time from Figure 18.

For example, finding effective capacities of all combinations of 7

link failures would take about 5.8 hours on a single 24 core machine

in the presence of canonicalization. Without the optimization, it

would take about 66 years.
Computing Routing Tables. Calculating a routing table is also

well within the compute power available to cloud and content

providers. It takes at most 2 minutes for a given trunk wiring and a

2-link failure pattern for a 128-port WAN router, across all possible

trunk sets and 2-link failure combinations.

RoutingApproximation. For the 512-port router, wewere unable
to find optimal routing tables using our compute cluster. However,

our approximation formulation (§4) completed in a few minutes

for this size of router. Figure 21 shows the optimality gap for our

approximation for a 128-port router. It reports, for each trunk set,

the maximum number of L2 switch failures which preserve full

capacity. We observe that the approximation underestimates this

quantity by at most 2, relative to the optimal.

6 RELATEDWORK
Prior work has considered fault tolerance in multi-stage switching

networks [2] (and references therein). This line of work considers

interconnection networks where, unlike our setting, (a) packets

traverse the network in one direction from the first stage and exit

at the last stage so early forwarding opportunities do not exist,

and (b) do not incorporate trunks. Since early forwarding is not

possible, designers over-provision the networks [1, 11, 14, 15, 26,

30, 35, 36], by replicating stages, links, or the entire network. Our

work achieves fault tolerance without over-provisioning.

Our work might apply to FatTrees [4] and F10 [27]. The latter

focuses on limiting the blast radius of failures in datacenters by

carefully striping a Clos; it is complementary to our work that seeks

to improve failure resilience by adapting trunk wiring and routing

to provide non-blocking behavior in the presence of failures. We do

not know of WAN routers that incorporate other topology designs
2

proposed for datacenters, such as FatClique [39], random graphs:

Jellyfish [37], Xpander [38], and server-centric designs: BCube [17],

DCell [18], so our work focuses on Clos-based WAN routers.

Our work draws inspiration from Google’s original B4 net-

work [25] and more recent incarnation [19]. The B4 network

uses various complementary techniques to improve availability

2
In general, the topology of a WAN router can be arbitrary, but it must have non-

blocking behavior under some routing scheme.

including side-links between WAN routers at a site to increase

resilience. Our work can be directly applied to these WAN routers

to further improve overall resilience.

Prior work [40] formulated a non-linear integer optimization to

minimize over-subscription in asymmetric topologies while fitting

WCMP entries within table limit constraints. Our work consid-

ers a different problem: finding WCMP weights for non-blocking

behavior of a WAN router.

Finally, our formulations and proof techniques draw inspiration

from ideas from robust validation [10], robust optimization [5, 7],

linear programming [8], and convex analysis [6, 9]. Robust valida-

tion [10] approximates solutions of max-min problems in robust

optimization [5, 7]. Instead, our work finds the exact solutions by

leveraging the convex polytope property of traffic matrices.

7 DISCUSSION
External Link Failures. External links can fail in practice. Our

work extends easily to cope with such failure in two different sit-

uations. A total trunk failure, in which every link of a trunk fails,

neither decreases effective capacity nor changes internal routing.

Therefore, our approach applies directly. However, a partial trunk

failure, where some links in a trunk fail, requires recalculation of

effective capacity and routing (§A.10), which can be pre-computed.

Non-Uniform Internal Path Length. Because some incoming

traffic on a trunk can be early forwarded, flows within a trunk may

experience slightly different latencies. However, packets within

a flow do not experience re-ordering because WCMP hashes all

packets in a flow to the same path.

Cell-Based Routing. Some multi-chip routers, such as Star-

dust [41] designed from Broadcom Jericho2 [22] and Ramon [23]

chips, use cell-based routing. In this approach, the router’s ingress

ports divide packets into fixed size cells and spray them uniformly

across the fabric, re-assembling the packet at the egress ports. For

such routers, our optimal wiring can increase effective capacity

(e.g., over random wiring in Figure 17) but, because it is yet unclear

how to do weighted forwarding in these fabrics, it remains an open

question how to compute WCMP-like forwarding tables for them.

8 CONCLUSION
This paper discusses an approach to optimizing trunk wiring and

forwarding weights to increase the resilience of WAN routers in

large content- and cloud-provider networks. Based on the observa-

tion that early forwarding in L2 switches can create excess internal

capacity in the WAN router, enabling it to be more resilient to

internal failures, we formulate an efficient optimization to derive

the minimal-upflow trunk wiring. Then, given this wiring and an

arbitrary failure pattern, we devise an efficient optimization to

compute the effective capacity under failure, and finally describe a

technique to compute compact forwarding tables that can ensure

non-blocking behavior subject to this effective capacity. Our evalu-

ations show that our approach can greatly increase the resilience

of WAN routers without sacrificing a precious resource in today’s

switches, routing tables.
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A APPENDICES
Appendices are supporting material that has not been peer reviewed.

A.1 Using Extreme Matrices for
Minimal-UpflowWiring

Theorem A.1. The following equation holds:

min

w ∈W
max

T ∈T
U (w,T ) = min

w ∈W
max

T ∈E
U (w,T ).

Proof. Given a fixed wiring w , we first show that

maxT ∈T U (w,T ) = maxT ∈E U (w,T ). From the definitions

of upflow in Equation 1 and Equation 2 with a constant w ,

the optimization maxT ∈T U (w,T ) is a linear program with a

compact (closed and bounded) feasible set, and optimal solutions
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exist at the boundary, including extreme points, of the traffic

set T . Therefore, some of these optimal solutions are extreme

points in the extreme traffic set E, a well-known result in Linear

programming [6, 8]. This is equivalent to solving maxT ∈E U (w,T ),
which directly gives an optimal extreme point. Finally, since

maxT ∈T U (w,T ) = maxT ∈E U (w,T ) for any given w , it follows

that minw ∈W maxT ∈T U (w,T ) = minw ∈W maxT ∈E U (w,T ),
which proves the theorem. □

A.2 Symmetric Trunk Sets
Theorem A.2. For a symmetric trunk set with {ak }k ∈K and ak

is some positive integer, the trunk wiring that uniformly distributes
links of each trunk over L1 switches, such that w∗sk = ak for every
s ∈ L1 and k ∈ K , optimally solves problem in Equation 3. Further,
the total upflow is always 0.

Proof. Given a symmetric scenario with {ak }k ∈K , the upflow
rate in Equation 1 under any traffic matrix T is

u
i j
s (w

∗,T ) =

[
ai ti j

ai |L1 |
−

aj ti j

aj |L1 |

]
+

= 0.

Therefore, the total upflow is 0, the maximum total upflow is also

0, i.e.,maxT ∈T U (w
∗,T ) = 0, and the wiring is optimal, since every

total upflow is at least 0. □

A.3 Number of Auxiliary Constraints
Lemma A.3. The number of auxiliary constraints for formulation

in Equation 5 increases like O
(
|L1 | 2

K 2

)
.

Proof. Every upflow rate in Equation 1 requires an auxiliary

constraint for the positive projection. From the total upflow in Equa-

tion 2, every extreme traffic matrix requires O(K2 |L1 |) auxiliary

constraints.

The number of extreme traffic matrices can increase exponen-

tially in the square of trunks as |E | = O
(
2
K 2

)
. This bound is a

consequence of [31] that the number of extreme points is upper

bounded by O
( (p−⌊d/2⌋−1

⌊d/2⌋
) )
, where d = K2 − K is the dimensions

of the traffic matrix, and p = d + 2K is the number of constraints

from positivity and Equation 4. It follows that

|E | ≤ O

((
K2/2 + 3K/2

K2/2 − K/2

))
≤ O

(
2
K 2

)
.

Note that the last inequality uses an approximation of binomial

coefficients in [13]. Therefore, the number of auxiliary constraints

increases like O
(
K2 |L1 | 2

K 2

)
= O

(
|L1 | 2

K 2

)
. □

A.4 Approximating Minimal-Upflow Wiring

min

w ∈ ˆW

U (w, T̂ ) where

T̂ = [t̂i j ], t̂i j = max

T ∈E
ti j ,∀(i, j) ∈ K2

ˆW =W ∩

{
wsk ∈

{⌊
Mk
|L1 |

⌋
,

⌈
Mk
|L1 |

⌉}
,∀s ∈ L1,k ∈ K

}

Figure 22: Steps in the canonical-form resolution.

A.5 Polynomial Time Canonicalization
Algorithm 1 outputs a canonical form of a given failure pattern.

Figure 22 shows an example of the steps performed by the algorithm:

recall that a link in this graph corresponds to a failed link in a WAN

router. Intuitively, the algorithm (Algorithm 1) leverages the fact

that the topology is bi-partite and re-orders nodes and links in a

deterministic fashion to arrive at a canonical form.

In the first step (Lines 1-3), the algorithm re-orders L1 switches.

In Line 1, it groups L1 switches by similarity of trunk link distribu-

tion, e.g., switches a1 and a2 belong to a group because they have

links to the same two trunks (A and C) and switches a3 and a4
belong to the (B, C) group in Figure 22. In creating groups, only the

number of links to each trunk matters. So, if one 4-port L1 switch

has links in this order (A, A, B, C) and another in this order (A,
B, C, A), they belong to the same group, but another switch with

links (A, B, B, C) does not belong to that group. In Lines 2 and

3, the algorithm sorts nodes within a group in descending order

according to the number of failed links (or cardinality) associated
with the node. The sort moves nodes with more failed links to the

left within each group.

In the next step (Lines 4 and 5), the algorithm attempts to re-

order L2 switches in a canonical order. To do this, it defines a label
for each L2 switch. This label captures the link wiring from that

switch, while preserving group structure. The label is an ordered

list of tuples, where each tuple represents a group and enumerates

the cardinality of each L1 switch in the group in descending order.

For example, consider the L2 switch b3 in Figure 23. Its label is

((0, 0, 0, 0), (2, 1, 0, 0)) because it has no links to the first group, but

has links to a5 and a6. The first two elements in the second tuple

are 2 and 1, which are the cardinality of a5 and a6 respectively. Line
4 assigns these labels, and Line 5 re-orders L2 switches lexicograph-

ically in descending order of labels. This is shown in the 3rd step

in Figure 22, which moves b2 to the left.

The third step of the algorithm (Lines 6-10) attempts to re-

arrange L1 switches within the same group and with the same

cardinality by the rank of the L2 switch they are connected to. To

achieve this, we “back propagate” the tuples from the L2 switches

to the corresponding groups (Line 9), then, among all switches

with the same cardinality (Line 7), we re-order them in descending

lexicographic order (Line 10). This results in the fourth graph in

the first row of Figure 22. This is the canonical form of the original

failure graph.

The second row of Figure 22 shows another failure pattern that

reduces to the same canonical form (this pattern does not require

the third step).
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Algorithm 1: Canonical-form resolution

Input :Graph F
Output :Canonical formψ (F )

1 Group L1 nodes by their trunk wiring.

2 for each group of L1 nodes do
3 Sort nodes in descending order by their cardinality

4 Label each L2 node by a tuple of L1 tuples, where each L1

tuple is an L1 group of sorted (in descending order) L1-node

cardinalities associated with the L2 node.

5 Sort L2 nodes in descending order by their label.

6 for each group of L1 nodes do
7 Group L1 nodes by their cardinality to subgroups.

8 for each subgroup of L1 nodes do
9 Label each node by a tuple of L2 node indices.

10 Sort nodes in descending order by their label.

Figure 23: L2 label and L1 node’s cardinality. Each L1 tuple in an
L2 tuple is the sorted cardinalities of L1 nodes that the L2 node
connects to. Unconnected L1 node corresponds to 0 in an L1 tu-
ple.

A.6 Using Extreme Traffic Matrices for
Effective Capacity

Theorem A.4. The following equality holds:

min

F ∈F
min

T ∈T
max

θ ∈Θ(F ,T )
θ = min

F ∈F
min

T ∈E
max

θ ∈Θ(F ,T )
θ .

Proof. Given a fixed F , we first prove that

min

T ∈T
max

θ ∈Θ(F ,T )
θ = min

T ∈E
max

θ ∈Θ(F ,T )
θ . (7)

Let θ∗ = maxθ ∈Θ(F ,T ∗) θ be an optimal solution of the left hand side

attained at traffic matrix T ∗ ∈ T . We will show by contradiction

that at least one extreme traffic T ∈ E leads to this θ∗. Specifically,
θ∗ = minT ∈E maxθ ∈Θ(F ,T ) θ . Suppose there is no such extreme

point. Let
ˆθ > θ∗ and ˆθ = minT ∈E maxθ ∈Θ(F ,T ) θ be the minimum

achieved by the extreme traffic set E. Caratheodory’s theorem [6]

implies there exists |K |2 + 1 extreme points {Tx } in the extreme

traffic set E such that

T ∗ =

|K2 |+1∑
x=1

λxTx ,

|K2 |+1∑
x=1

λx = 1, λx ∈ [0, 1] ∀x .

Then, it is possible to construct r̂ from a convex combination

of {rx } derived from
ˆθ , {Tx } and {λx } such that all constraints in

Equation 6 are satisfied by
ˆθ , r̂ and T ∗. This means the feasible set

Θ(F ,T ∗) contains ˆθ , and we have maxθ ∈Θ(F ,T ∗) θ = θ
∗ ≥ ˆθ , which

is a contradiction. Thus, there exists an extreme traffic Tx ∈ E that

θ∗ = maxθ ∈Θ(F ,Tx ) θ , and the equality in Equation 7 holds. Since

the equality holds for any F , it also holds at the minimum. □

A BC A BC C C A BC A BC C C

Figure 24: An L1-switch failure can reduce capacity on some
trunks.

A.7 Failure of L1 switches
Unlike internal link or L2-switch failures, an L1-switch failure not

only disables internal links, but also reduces capacity of trunks

whose links connect to the switch, as shown in Figure 24. As a

result, computing the effective capacity uses a slightly different

formulation from the L2-switch case, but our definition of effective

capacity is the same: we define the effective capacity as the fraction

γ by which we scale the capacity of each trunk incident on a WAN

router, such that the router is non-blocking under any set of traffic

matrices with the reduced-capacity trunks.

Specifically, letH be the set of L1-switch failures, andMk (H ) be
the number of trunk k’s active links under a failure H for H ∈ H .

The effective capacity γ is obtained by solving:

min

H ∈H
min

T ∈T
max

γ ∈Γ(H,T )
γ where

Γ(H ,T ) =

{
γ ∈ [0, 1] :

γ
∑
i ti j ≤ Mj (H ) ,∀j ∈ K

γ
∑
j ti j ≤ Mi (H ) ,∀i ∈ K

}
.

As in the previous section, we leverage the fact that the set of all

traffic matrices is a convex polytope, and only consider the (finite)

set of extreme traffic matrices E (Theorem A.5). Algorithm 2 depicts

our algorithm, which iterates over every combination of failure

pattern and extreme traffic matrix. Note that, in Algorithm 2, the

number of operational trunk links {Mk (·)} can be derived from

{Mk } and {wsk }.

Theorem A.5. The following equality holds:

min

H ∈H
min

T ∈T
max

γ ∈Γ(H,T )
= min

H ∈H
min

T ∈E
max

γ ∈Γ(H,T )

Proof. The proof is similar to Theorem A.4 and is omitted. □

Algorithm 2: Finding effective capacity γ
Input : {Mk }, {wsk }, E,H

Output :Effective capacity γ

1 γ ← 1

2 for (H ,T ) ∈ H × E do
3 for i ∈ K do
4 if

∑
j ∈K ti j > Mi (H ) then

5 γ ← min

[
γ , Mi (H )∑

j∈K ti j

]
6 if

∑
j ∈K tji > Mi (H ) then

7 γ ← min

[
γ , Mi (H )∑

j∈K tji

]

A.8 Effective Capacity Under Arbitrary
Combinations of Failures

To compute the effective capacity under an arbitrary combination of

internal link and L1/L2 switch failures, let L1(H ) be the remaining
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L1 switches under L1-switch failure pattern H , i.e., L1(H ) = L1\H .

The effective capacity under given failure sets F andH is a solution

of the following optimization:

min

H ∈H
min

F ∈F
min

T ∈T
max

ω ∈Ω(F ,H,T )
ω where Ω(F ,H ,T ) =

ω :

∑
a∈L1(H ) r

i j
ab =

∑
a∈L1(H ) r

i j
ba ,∀b ∈ L2, (i, j) ∈ K

2∑
b ∈L2

r
i j
ba + ωti j

wai
Mi (H )

=
∑
b ∈L2

r
i j
ab + ωti j

waj
Mj (H )

,∀a ∈ L1(H ), (i, j) ∈ K
2∑

(i, j)∈K2 r
i j
ab ≤ I [(a,b) < F ]

,∀(a,b) ∈ (L1(H ) × L2) ∪ (L2 × L1(H ))
ω
∑
i ∈K ti j ≤ Mj (H ) ,∀j ∈ K

ω
∑
j ∈K ti j ≤ Mi (H ) ,∀i ∈ K

r
i j
ab , r

i j
ba ∈ R+ ,∀a ∈ L1(H ),b ∈ L2, (i, j) ∈ K

2

ω ∈ [0, 1]


The set Ω(F ,H ,T ) is similar the set Θ(F ,T ) except that failed L1

switches in H are not considered in Ω(F ,H ,T ). This reflects in the

usage of L1(H ) andMk (H ).
As before, the convex polytope property of the traffic set T can

be used to simplify the optimization to

min

H ∈H
min

F ∈F
min

T ∈E
max

ω ∈Ω(F ,H,T )
ω .

Theorem A.6. The following equality holds:

min

H ∈H
min

F ∈F
min

T ∈T
max

ω ∈Ω(H,F ,T )
= min

H ∈H
min

F ∈F
min

T ∈E
max

ω ∈Ω(H,F ,T )

Proof. The proof is similar to Theorem A.4 and is omitted. □

A.9 Compact Forwarding Table Formulation
The Formulation. Our compact forwarding table optimization

seeks to find flow count assignments x
i j
ba and x

i j
ab , such that the

maximum total flow count assignment at an L2 switch is minimized:

min

(x,µ)∈Φ(F ,T)
max

b ∈L2


∑
a∈L1

∑
(i, j)∈K2

x
i j
ba

 where Φ(F ,T) =


(x , µ) :

∑
a∈Li j+

x
i j
ab =

∑
a∈Li j−

x
i j
ba ,∀b ∈ L2, (i, j) ∈ K

2∑
b ∈L2

x
i j
ab = µv

i j
a I[a ∈ L

i j
+ ] ,∀a ∈ L1, (i, j) ∈ K

2∑
b ∈L2

x
i j
ba = µv

i j
a I[a ∈ L

i j
− ] ,∀a ∈ L1, (i, j) ∈ K

2∑
(i, j)∈K2 θ (F )ti jx

i j
abαi j ≤ µI [(a,b) < F ]

,∀(a,b) ∈ L1 × L2,T ∈ T∑
(i, j)∈K2 θ (F )ti jx

i j
baαi j ≤ µI [(a,b) < F ]

,∀(a,b) ∈ L1 × L2,T ∈ T

µ,x
i j
ab ,x

i j
ba ∈ Z+ ,∀(a,b) ∈ L1 × L2, (i, j) ∈ K

2


In the formulation, the first constraint ensures flow count con-

servation at each L2 switch for each trunk pair. We define L
i j
+ and

L
i j
− respectively be the set of L1 switches with upflow flow count

and the set of L1 switches with downflow flow counts. The second

and third constraints ensure conservation between flow counts at

a switch having upflow and downflow respectively. In some cases,

these flow counts may cause a link to exceed its capacity, in which

case we scale the flow counts by a factor µ. The fourth and fifth

A A A AB B B C

C🠖A C🠖A C🠖A C🠖A
Flow count: 1 1 31

2
1
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11

Fractions {¼,¼,½}

¼½

¼
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Figure 25: WCMP weights are derived at an L1 switch and an L2
switch.

constraints limit the flow counts on each internal link by link ca-

pacity. In this step, we also scale the traffic matrix by the effective

capacity θ (F ) for the given failure pattern, as computed in §3. The

last constraint defines the domain of the variables.

Computing WCMPWeights for Egress Links in L1 Switches.
As discussed above, the assigned flow counts {x

i j
ba } from the com-

pact routing optimization can be directly used as WCMP weights in

L2 switches. However, at an L1 switch, {x
i j
ab } (also an output of the

optimization) only assigns flow counts to links to L2 switches. L1

switches also have egress links and these must be considered when
assigning weights at L1 switches. The rate of egress traffic from trunk

i to trunk j at an L1 switch s is ti jws j/Mj , and each switch port

carries ti j/Mj . Then, the egress fraction is 1/Mj per switch port.

WCMP weights can be derived from these egress fractions and

the upflow fractions. At an L1 switch s , the FGCDof the fractions per

trunk pair (i, j) is FGCD
(
1/Mj , {αi jx

i j
sb }b ∈L2

)
. WCMPweights are

the fractions divided by that FGCD. This is illustrated in Figure 25

which shows the WCMP weights assigned to the rightmost L1

switch as 2 and 1 for upflows and 1 for early forwarding.

A.10 Partial External Trunk Failure
We can extend our approach to handle partial external trunk fail-

ures, in which one or more links in a trunk can fail. Such a failure

can increase upflow because traffic on the failed links is evenly dis-

tributed over the remaining links of the same trunk. The increased

upflow requires re-calculating (a) traffic matrices, (b) effective ca-

pacity, and (c) routing tables.

Traffic Matrices. When some external links fail, the capacity of

the trunk associated with the failed links decreases, from Mk to,

say,M ′k . This change in capacity changes the set of traffic matrices

Equation 4 so we need to re-compute the extreme traffic set for the

new trunk set {M ′k }.

External Link Failure Pattern. An external link failure affects

how traffic flows internally in the router, since there can be no

ingress or egress traffic on the failed link. We assume a given wiring

cannot be rewired, so an external link failure “removes” the failed

links from the wiring and yields a residual wiring that contains only
active links. For example, in Figure 25, if the link connecting trunk

A and the leftmost L1 switch fails, the residual wiring at the switch,

say 1, is (w ′
1A,w

′
1B ,w

′
1C ) = (0, 1, 0). Now, for a given minimum-

upflow wiring, each external link failure pattern can induce a new

residual wiring and for each such residual wiring, we would need

to pre-compute effective capacity and routing tables.

To reduce the space of residual wirings, we can canonicalize each
external failure pattern (in much the same way as we canonicalize

internal failures §3.3), so we would only need to consider as many

residual wirings as the number of canonical patterns. Specifically,

439



Towards Highly Available Clos-Based WAN Routers SIGCOMM ’19, August 19–23, 2019, Beijing, China

Figure 26: Steps in the canonical-form resolution for external
failure.

given an external failure patternQ , Algorithm 3 can find a canonical

formψ ′ (Q) of the external failed links. Figure 26 shows an example

of applying this algorithm to the external failure pattern on the left.

The first step labels each L1 node by the number of failed external

links it associated with. For example, the first L1 switch a1 has a
failed link from trunk C. So, the algorithm assigns it a label (0, 0, 1).

Steps 2-4 group L1 nodes that have the same wiring and sort the

nodes according to their label in descending order. For example,

a2 becomes the leftmost L1 switch in its group {a1,a2}. Intuitively,
the algorithm moves failed links to the left within each L1 group.

Algorithm 3: Canonical-form resolution for external failure

Input :Graph Q
Output :Canonical formψ ′ (Q)

1 Label each L1 node by the numbers of trunk’s failed links.

2 Group L1 nodes by their trunk wiring.

3 for each group of L1 nodes do
4 Sort nodes in descending order by their labels.

Once canonical forms are available, the residual wiring w ′ is
just the original wiring w with failed links in the canonical form

ψ ′ (Q). Each residual wiring is then used to generate internal failure
patterns (§3.3).

Effective Capacity and Routing. Under external link failure, the
steps above generate a new trunk set {M ′k }, residue wiring w ′,

a traffic set T ′, an extreme traffic set E ′, and a set of internal

failure patterns F ′. They are the inputs to an effective capacity

calculation, which is a modified version of the optimization in §A.8.

Intuitively, the modified version replaces ({Mk },w,T , E,F ) with
({M ′k },w

′,T ′, E ′,F ′), and it assumes that all internal and external

links of an L1 switch fail if the switch fails. After obtaining the

effective capacity, a compact routing table could be optimized by

computing flow counts and solving the formulation in §A.9 using

the new effective capacity, T ′, E ′, and F ′.
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