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Coping with the intermittency of renewable power is a fundamental chal-
lenge, with load shifting and grid-scale storage as key responses. We pro-
pose Information Batteries (IB), in which energy is stored in the form of
information—specifically, the results of completed computational tasks. In-
formation Batteries thus provide storage through speculative load shifting,
anticipating computation that will be performed in the future.

We take a distributed systems perspective, and evaluate the extent to
which an IB storage system can be made practical through augmentation
of compiler toolchains, key-value stores, and other important elements in
modern hyper-scale compute. In particular, we implement one specific IB
prototype by augmenting the Rust compiler to enable transparent function-
level precomputation and caching. We evaluate the overheads this imposes,
alongwithmacro-level job prediction and power prediction.We also evaluate
the space of operation for an IB system, to identify the best case efficiency
of any IB system for a given power and compute regime.

1 INTRODUCTION
Within the next twenty years humanity must eliminate fossil fuel
use to avoid dangerous climate change [28, 37]. To do so requires
renewable electricity generation.While there have been dramatic de-
creases in the cost of wind and solar, their intermittency in response
to weather and solar irradiance is a widely-known issue [9, 10]. This
intermittency is often out of phase with overall demands, so when
renewable production is high, prices tend to be low (Figure 1).
The research community has explored myriad responses to this

intermittency [3, 13, 22, 27, 33, 34, 51, 52, 55, 60], but has been stuck
between the Scylla of dynamic load shifting and the Charybdis of
expensive grid-scale storage. Dynamic load shifting at grid scale
requires the rare combination of flexible, large, and ubiquitous loads.
Grid-scale storage with proven technology requires nearby hydro-
electric capacity or expensive battery arrays.

In this paper we aim for the best of both worlds: storage of surplus
renewable production through the load shifting of computation with
speculative execution. Computation is near-infinitely divisible,
flexible, large, ubiquitous, and can be stored cheaply. This approach,
Information Batteries (IB), entails storing energy as completed
precomputations that can, as we show, meet or exceed the end-
to-end efficiency of grid-scale storage using existing infrastructure.
Not all workloads or conditions will yield high efficiency with this
approach, so a key aspect of our exploration is its limits.
Background. Even with relatively modest adoption of renewables
and despite the inherent statistical multiplexing of large power grids,
grid operators will soon face the problem of too much power. During
the middle of the day in California it is now often the case that there
is too much power being produced, largely due to solar, driving the
price of electricity negative [9]. This problem has arisen with just
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Fig. 1. Gas generation is flexible; wind generation requires wind, and is often
out of phase with demand. Prices tend to be lower when wind generation is
higher. Based on 2019 price and fuel mix data from MISO [36].

20% of California’s electricity generation coming from solar (the
renewable source with the greatest growth potential) [2].
Today we face both power dumping and load shedding due to

insufficient power during peak times. This disconnect in supply and
demand, as renewable energy sources under-produce during low
availability times and over-produce during high availability [58, 61],
is the key challenge that must be solved to adopt renewables.1
An oft-proposed strategy to address this problem is to increase

grid-scale storage via traditional energy storage systems such as
lithium-ion batteries and pumped hydro [6]. However, such sys-
tems require a relatively high initial investment and have siting
constraints; also, adding enough storage to soak up all excess pro-
duction is prohibitively expensive [10]. Similarly, smart-grid advo-
cates often observe that if the grid could simply signal to individual
devices, such as appliances, when to consume power, this demand
shifting could adapt to power availability. However, as with storage,
demand shifting requires both grid upgrades—a proposition that a
number of governments have balked at—and wide-scale adoption
of new smart loads.
Approach. With Information Batteries, we propose the storage
of energy as information, using the large and growing footprint
of computing to perform both the functions of storage and load
shifting. This approach hinges on three observations. First, data
centers worldwide consume large amounts of electricity (250–500
TWh in 2018) and are projected to become even more power-hungry

1This negative-priced power and curtailed power (dumped power) are together referred
to as opportunity power [10].
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(840–3640 TWh in 2030 [1]).2 Second, many computational tasks can
be precomputed in whole or in part. Third, both power availability
and compute demands are somewhat predictable, and thus it is
possible to do speculative load shifting.

Rather than storing excess energy as a chemical (lithium-ion) or
gravitational (pumped hydro) potential, an IB system stores this
as information—completed computations. When excess renewable
energy is available, an IB system uses this excess to perform pre-
computable, energy-intensive computations. The results of these
computations are then stored for when they are needed. The duality
of computation and energy is not new—it has been studied exten-
sively in information theory, such as in the context of adiabatic
computing [16]. However, this observation has not been raised to
the level of grid-scale energy systems.
We study the limits of Information Batteries in enabling a renew-

able energy transition at a macro scale. For Information Batteries
to be effective and worthwhile, they must 1) be less expensive than
traditional storage systems, 2) shift significant computational work
from grid to opportunity power, and 3) achieve this significant shift
for some common workloads rather than new, esoteric workloads.
As we show, it seems that this is only possible for some workloads
and in some contexts.
We take a distributed-systems perspective, and evaluate the ex-

tent to which an IB storage system can be made practical through
augmentation of compiler toolchains, key-value stores, and other
important elements in modern hyper-scale compute. Our ability
to shift computational load to opportunity power hinges on the
accuracy of our predictive engine. If we cannot predict upcoming
requests with at least reasonable accuracy, our system will not
have results available for when they are requested, and may end
up wasting opportunity power performing computations that are
never requested. Furthermore, we must be able to accurately predict
the future availability of opportunity power, so that we can effec-
tively schedule our computations to take advantage of it. Finally, we
must ensure that the cost of retrieving cached results is significantly
smaller than the cost to compute them; otherwise, it is more efficient
to perform the computation on demand.
Contributions. This paper makes three contributions:
(1) We introduce the idea of Information Batteries that provide a

new speculative load shifting mechanism to address grid-scale
renewable energy intermittency.

(2) We explore the design space of Information Batteries and show
that in some common power and compute regimes there is the
potential for an IB system to deliver efficiencies better than
the best grid-scale storage available while in others IB systems
provide little benefit.

(3) We implement a proof-of-concept IB system by augmenting the
Rust compiler to enable transparent function-level precomputa-
tion and caching. We evaluate overhead, along with macro-level
job prediction and power prediction.

2While some companies, such as Google, balance their data center power usage with
renewable energy power purchase agreements, this still addresses only average power
generation, not the peaks and troughs of generation.

2 CONTEXT
In this section we motivate the need for and feasibility of Infor-
mation Batteries. We focus on two renewable energy markets: the
Midcontinent ISO (MISO), which operates in the Southern and Mid-
western United States and parts of Canada, and the California ISO
(CAISO), which covers all of California. This allows us to narrow
our scope while still considering both wind-dominant (MISO) and
solar-dominant (CAISO) markets [35].

2.1 Availability of opportunity power
Opportunity power in CAISO and MISO is significant, growing,
and often available. Current estimates place the yearly combined
opportunity power of CAISO and MISO in 2017 between 7–20 TWh
per year [9, 10]. In MISO, opportunity power is available 99% of the
time (meaning opportunity power is available somewhere 99% of the
time, since prices are location-dependent), and often in intervals
of >100 hours [10]. In CAISO, some solar generators experience 3.3
hours of opportunity power per day [9].
Solar and wind energy are projected to be the fastest growing

sources of electricity generation in the U.S., and currently account
for 10% of total U.S. electricity generation [7, 18]. As solar and wind
generation grow, so too will the amount of curtailed and negative
priced power. Indeed, [9] measures the compound annual growth
rate of opportunity power in CAISO to be 40%. Assuming 1.5 TWh
of opportunity power in CAISO in 2017 (a conservative estimate)
and a constant growth rate, CAISO alone could provide 22 TWh of
opportunity power by 2025, enough to power all of Los Angeles.

2.2 Limitations of traditional energy storage
Energy storage is a simple response to overproduction. However, cur-
rent battery prices make this untenable; grid-scale lithium-ion stor-
age costs $356 per kWh today [38], not including installation costs.
A naïve analysis of CAISO and MISO data, assuming 1.5 TWh/year
and 6 TWh/year of opportunity power, respectively, yields a conser-
vative estimate of $35 million to add one hour of storage to CAISO,
and $140 million to add one hour of storage to MISO. A more com-
plex analysis [10] suggests that adding grid-scale storage provides
diminishing returns, and that adding 50 hours of storage to MISO
would cost $50–400M per wind generation site, on par with the cost
of the turbines themselves.

2.3 Non-computational load shifting
Existing non-computational flexible loads include manufacturing
facilities, EV charging, and adaptive home appliances [15, 52].
Household or otherwise small-scale (but widespread) loads are

a popular demand shifting target, such as in smart homes with or
without storage [3, 22, 27, 33, 51, 55, 60] or in smart buildings more
generally [34]. EV charging is a growing, flexible load [13]. Such
load shifting requires accurate prediction capabilities [30, 32] such
as of renewable generation and weather [5, 46, 47].

2.4 Computational load shifting
Some have considered to simply store power in data centers using
the batteries in those facilities rather than shifting load [19, 21, 59].
Prior work has suggested shifting the loads themselves to lever-
age surplus power [11], for example by examining the price for
computation (or power itself) in different regions [31, 41].
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Data centers have more than enough capacity to soak up oppor-
tunity power. American data centers consume 70TWh/year, 1.8%
of the country’s total energy consumption [49]. With opportunity
power in CAISO and MISO estimated at 7–20TWh/year [9, 10], op-
portunity power has the potential to provide between 10–30% of
the energy needed by data centers.

Prior work also considered scheduling large-scale compute tasks
under a variety of constraints. Speculative execution has been long
known in computing [8, 50], but has not been applied in this context.
Google recently announced their “carbon-intelligent computing
platform” that attempts to reduce carbon emission of datacenters
by aligning time-insensitive tasks with periods of high renewable
energy availability [42]. In this paper, wewill refer to this and similar
techniques as time-shifted compute.

3 INFORMATION BATTERIES
Next we address the challenges of: 1) properties of computational
tasks, hardware, and energy grids that make them more or less
suited to Information Batteries, 2) the key elements of an IB system,
and 3) the best case scenario/theoretical limits of IB systems.

3.1 Prediction
There is an element of speculation to any demand shifting: the
assumption that the work done will be useful at some future time.
However, most flexible loads are general tasks that will almost
certainly be useful (e.g., charging an EV, washing clothes), and are
therefore non-speculative. Precomputation, on the other hand, is
speculative. Given the infinite space of possible computations, more
work is needed to identify computational work that will be useful at
some point in the future. The ability to predict future computations—
to perform task prediction—is therefore key.

3.2 Granularity
Prior work on flexible loads has focused on high-granularity tasks—
washing clothes, charging a car, even time-shifting large-granularity
computational tasks [42]. Micro demand shifting is comparatively
understudied. IB systems allow for tuneable load granularity, since
computational tasks can (at least in theory) be broken into different-
sized tasks (although data dependencies and complexity considera-
tions may in practice favor large tasks).

3.3 Speculative demand shifting
The IB approach of demand shifting differs from prior approaches
in two ways: the load itself is not pre-existing (as it is speculative),
and the granularity at which we shift varies. Computation can be
speculatively executed at many granularities, from whole-system
to individual instructions.
Speculative load shifting uses energy to store not energy but

information. This is different from conventional load shifting, which
does not require storage (as the load itself has been shifted). However,
since data storage is far less expensive than energy storage, this
requirement is a minor imposition.

3.4 Computational loads
Information Batteries are well-suited to tasks with high predictabil-
ity and a large potential speedup. Potential speedup is the ratio

between run time and IB cache latency. Given the same cache la-
tency, longer running tasks will have higher potential speedup.
Applications that fit these requirements include:

(1) Machine learning. OpenAI notes that AI workloads, partic-
ularly training, are growing exponentially [39]. Such work-
loads are ideal for Information Batteries due to their size,
latency insensitivity, and high predictability.

(2) Video transcoding. Video streaming now accounts for 75%
of web traffic [4], so video transcoding—the process of con-
verting a video from one resolution to another—has become
an important cloud workload. Video transcoding has the po-
tential to be highly predictable, since consumer behavior
drives which videos are requested.

(3) Large-scale data analytics. Companies like Facebook col-
lect a huge amount of data [24], the analysis of which is both
time and resource intensive. In many cases, this work can be
performed asynchronously.

In addition to predictability of macro workloads, the IB approach
can precompute some or all of the fragments of expected jobs and
then reassemble these fragments on demand. Thus predictability
extends not only to whole jobs but sub-job fragments. Furthermore,
with careful binary and execution trace analysis, it is likely possible
to perform computations using speculatively precomputed frag-
ments of different jobs, as many workloads have some commonality.
Indeed, assembling whole computations out of fragments of code
is well studied in the literature in very different contexts, such as
in the case of Return-oriented Programming [43, 45]. Exploring the
efficiency of fragment precomputation and reassembly is worthy of
study but beyond the scope of this paper.

3.5 Grid properties
For an IB system to be successful, renewable generation must be
large, long-lasting (e.g., with high duty cycles), and predictable. This
is influenced by consumption patterns, the powermix of the grid, the
physical locations of power sources, and the amount of traditional
(battery) storage available.

3.5.1 Renewable energy availability. The grid power mix impacts
energy availability and pricing. Energy generation from fossil fuels
can be scaled up or down to meet demand, hydro generation is
relatively stable and flexible, and intermittent renewables (primarily
wind and solar) produce according to environmental conditions.
These different patterns have an impact on pricing: when generation
is higher than demand, prices drop, as expected.

3.5.2 Power prices. Negative power prices are the best indicator of
uneconomic production. Prices are used as a proxy for renewable
oversupply because, unlike renewable production data, they tell
us something about the current balance of supply and demand. If
renewable production is high, but so is consumer demand, then
adding more demand will be less useful. In order to maximize the
benefits of the system, we should prioritize scheduling work for
periods of time when renewable production is high and demand is
low, e.g. when prices are low.
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Fig. 2. Energy flows differently through Information Batteries and traditional batteries.

3.6 Framework
The key idea behind Information Batteries is quite simple: when
renewable energy is available in excess, we use it to speculatively
perform computation. The challenge is in determining what com-
putation to perform, where and when, and how these computations
should be done to make it efficient to retrieve their results later. The
energy expended to perform the computation is therefore stored as
the result of a computational task.3

4 DESIGN
Next we describe the key elements of an IB system, with a focus on
two goals: to maximize the shift of compute to opportunity power,
and to do so at a lower cost than traditional energy-storage systems.

4.1 Overview
We explore the components of an IB system, from compiler
toolchains to ML-based tools for power and job prediction. We
discuss how these could be combined in a production system.
Compiler Toolchain. Application binaries must be augmented to

allow for run-time caching and retrieval of results.
Key-Value Store. The system must include an efficient key-value

store for run-time caching and retrieval. In particular, the latency
of precomputed result retrieval from the key-value store must be
significantly less than the latency of computing that result directly.

Job Scheduler. A management system must be in place for sched-
uling incoming jobs during periods of opportunity power, and re-
turning results once they are available. In particular, jobs must be
prioritized according to their latency sensitivity and run time. The
job scheduler must therefore be aware of the target workload.
Predictors. Information Batteries rely on speculative execution,

and therefore require accurate predictions of future conditions.
Specifically, the IB system must be able to predict: 1) whether or not
opportunity power will be available in the near future (e.g., what
the price of energy will be) and 2) what jobs will be requested in
the near future, so that these jobs can be procomputed.

4.2 Program instrumentation
Memoization is a well-known technique used to improve the per-
formance of programs by caching the results of expensive compu-
tations for later use. Previous work has considered the benefits of
program memoization at the trace level, the basic-block level, and
the function level [14, 20, 25]. In this paper, we employ function-level
memoization, but later propose generalizations to this.

3There is a long history of work in lower-level aspects of the relationship between
energy and information, such as work on adiabatic computing [16].

1 cycles_trad = 0, cycles_op = 0
2 every 5 minutes:
3 predict = model price prediction
4 actual = actual price according to trace
5 job_size = number cycles per job
6 hit_rate = accuracy of task prediction
7 if predict <0 and actual <0: #true positive
8 cycles_op += job_size
9 cycles_trad += (1 - hit_rate) * job_size

10 elif predict <0 and actual >0: #false positive
11 cycles_trad += job_size
12 + (1 - hit_rate) * job_size
13 elif predict >0 and actual <0: #false negative
14 cycles_trad += overhead of memoize
15 else: #true negative
16 cycles_trad += overhead of memoize

Fig. 3. Logic of the IB simulator.

Prior work has shown that a subset of functions can benefit
from software memoization at compile and load time [53]. These
functions share the following characteristics: expensive, side-effect
free, critical, and repetitive arguments [54].

We apply these memoization techniques to precompute results for
memoizable functions in the program’s critical path. These results
obviate later execution with non-renewable power. We achieve this
by instrumenting all application binaries to use a key-value store to
memoize the results of function calls.

4.2.1 Compiler extensions. We consider one specific approach to
program instrumentation—compiler extension—and highlight other
possibilities later. In this approach, all source code is compiled using
our customized compiler, which inserts the appropriate hooks to
precompute and retrieve precomputed results.
For each call to a precomputable function, the compiler inserts

a fetch instruction to first check whether the function has been
precomputed, and return the precomputed result if it exists. Note
that since the fetch occurs at run time, it is important that its overall
latency is significantly lower than the run time of the function to be
computed. It is therefore important both that our cache implementa-
tion be efficient, and that our definition of precomputable function
excludes those with extremely short runtimes.4

4.2.2 Caching infrastructure. The IB cache must enable fast caching
and retrieval of precomputed results. In addition, for deployability,
we would like to use a generic key-value store for caching rather
than a IB-specific system. Here, latency and hit rate are important
because we do not wish cache retrieval to itself induce higher over-
heads than computation itself. In addition, the memory footprint of
the cache is important; results that require too much storage will
increase the cost of the cache infrastructure itself.

4The definition of precomputable function is flexible, and may differ between workloads.
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Parameter Description
Cache latency Storage and retrieval overhead
Cache hit rate Accuracy of task predict model
Job length Average job length
Price predict false positives Fraction of time model mistakenly

predicts negative-priced power
Price predict false negatives Fraction of time model fails to

predict negative-priced power

Table 1. Input parameters for the system-level IB simulator.

4.3 Scheduling
There are three main components to the IB manager: the sched-
uler, which receives computational tasks and schedules them to
maximize grid power savings; the price predictive engine, which
makes predictions about upcoming power prices; and the precom-
putation engine, which makes predictions about upcoming tasks,
and performs precomputations on these predicted tasks whenever
opportunity (negative-priced) power is available. If the incidence of
negative-priced power is too low, the threshold of what is considered
"negative" can also be set to some small positive number.
The scheduler receives tasks, and determines when and how

they should be computed. Submitted tasks are of the form
source code, deadline, where deadline indicates the latest
timestamp at which the result is needed.

If opportunity power is currently available, the task can be com-
puted immediately. Otherwise, the scheduler asks the renewable
predictive engine when opportunity power will next be available. If
the next available window of opportunity power is within the task’s
deadline, the task is scheduled.

Note that even if a task is not precomputable, the scheduler will
still attempt to schedule it for a period of opportunity power. Thus
any task with a generous enough deadline can be scheduled to use
opportunity power. The scheduler also forwards the source code
and the time it was received to the precomputation engine, which
bases its predictions on this real-time stream of task requests.
The renewable predictive engine forms the core of the scheduler;

the scheduler’s overall effectiveness is dependent on the ability of
the solar predictive engine to correctly predict opportunity power.
An inaccurate solar predictor risks missing out on opportunity
power, or erroneously scheduling tasks during regular grid power.

The precomputation engine is responsible for predicting upcoming
tasks, pre-computing them, and caching the results. There are two
main components of the precomputation engine: the task predictor
and the precompute manager. The task predictor receives a continu-
ous stream of task requests from the scheduler and uses a recurrent
neural network to predict task requests.
The precompute manager consists of a single event loop that

queries energy prices every 5 minutes until they fall below some
small threshold. At this point, the manager requests 5 minutes worth
of computational tasks from the task predictor. The precomputation
engine functions in 5-minute increments since that is the smallest
granularity at which energy prices are set in CAISO and MISO.

Before Instrumentation:
1 ...
2 fn square(a: u32) -> u32 { a * a };
3 let result = square(x);
4 ...

After Instrumentation:
1 ...
2 fn square(a: u32) -> u32 { a * a };
3 let result = memoize(square , "square", x);
4 fn memoize(f: fn(usize) -> usize , fname:

String , a: usize) -> usize {
5 let cached = db.get(fname , a);
6 if cached.is_some () {
7 return cached.unwrap ();
8 }
9 else {

10 let computed = f(x);
11 db.put(fname , a, computed);
12 return computed;
13 }
14 }

Fig. 4. Instrumented programs first check for precomputed, cached results
and use those results if found.

4.4 Integration
Information Batteries are designed to work with existing data cen-
ters. Some, very limited processing power is reserved for the IB
manager, which manages the scheduling of both real-time compu-
tational tasks and precomputation. A cluster of machines or VMs
is designated for precomputation. The IB cache, which stores the
results of these precomputations, is kept local for quick retrieval.
No additional infrastructure is needed.
Although Information Batteries have thus far been described as

an alternative to traditional energy storage, it is also possible to use
them in conjunction with traditional batteries. Figure 2 illustrates
the flow of energy in a traditional and information battery system,
and how these two could be combined.

5 IMPLEMENTATION
Next we describe our proof-of-concept implementation of Informa-
tion Batteries, which has three key components: 1) a Rust compiler
augmentation for function-level precomputation, 2) a price predic-
tion model for both CAISO and MISO, and 3) a function-level task
prediction model. Benchmarking these components allows us to
realistically parameterize our IB simulator.

5.1 Rust compiler instrumentation
We augment the Rust compiler to do function-level precomputation.
This is accomplished at the MIR (Mid-Level Intermediate Represen-
tation) stage of the Rust compiler [29]. At this stage, the program has
been converted into a control-flow graph (CFG) representation [44].
We implemented our instrumentation as an extra pass through the
CFG, which we call the memoize pass.
The memoize pass replaces each function call with a call to our

memoize function5. This takes as input a pointer to the original func-
tion, the function’s name (fetched at compile time) and the original
arguments to the function. memoize does the following: 1) checks if
the function has been called with the particular arguments before,

5We require that the input binary include the definition of memoize
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and 2) executes and caches the result of executing the function if
not. We refer to this instrumentation as the memoize wrapper. For
simplicity, we support only functions with the function signature
fn(u32)->u32, but in practice other signatures could be supported.
Figure 4 shows the instrumentation of a simple program with

memoize (code simplified for readability).

5.2 Cache
The performance of the precomputation engine is highly dependent
on the cache implementation. Latency should be minimized as much
as possible. For our proof of concept, we use pickleDB-rs [40] to
implement a simple, local key-value store. However, any key-value
store could be used in practice.

5.3 Price Predictor
We implemented our price models using TensorFlow, as Recurrent
Neural Networks (RNN) with one LSTM layer and one dense layer.
This is similar to techniques used for weather prediction [30, 57]. We
collected training data from historical 5-minute Location Marginal
Prices (LMPs) reported by MISO [36] and CAISO [23].
LMP is the dollar cost of supplying the next MW of power at a

specific geographic region [48]. Since pricing is location dependent,
the model makes predictions based on time of day and geography.
Given a location and a 5-minute interval, the price predictor returns
a prediction for the next hour’s worth of LMP prices. We define
opportunity power as being available any time the LMP prediction
drops below some small, tune-able threshold.

5.4 Task Predictor
We implemented task prediction using TensorFlow, as an RNN with
one LSTM layer and one dense layer. We collected training and
validation data from several open-source Rust crates: Substrate [17],
Iced [26], and Juniper [12]. For each crate, we generated a function-
level trace on their provided example applications, and used these
traces to train the model.

The resulting model takes as input a series of function calls, and
a specification, N, for how far in the future to predict. It returns a
prediction for the next N function calls. This is similar to techniques
used for text prediction [56]. Note that this approach is quite sim-
plistic. We do not consider, for instance, the value of arguments to
the function. Our implementation is intended as a small proof-of-
concept only.

6 EVALUATION
Our evaluation is in two parts. First, we microbenchmark each
component of our proof-of-concept implementation described in
Section 5. We then use these microbenchmarks, combined with real
price data from CAISO and MISO, to provide a realistic parameteri-
zation of a system-level simulation.

6.1 Microbenchmarking
Next we present our microbenchmarks of function-level memoiza-
tion and price prediction.

6.1.1 Function-level memoization. Figure 6 shows the latency of
function calls with memoization, as compared to traditional com-
pute. There are two sources of added latency from memoization: (1)
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the cost to check the cache for a precomputed result, and to return
it if it exists; (2) the cost to store a computed result.

We measured these values for our proof-of-concept implementa-
tion. The results, summarized in Table 2, were used to parameterize
our system-level simulations.
6.1.2 Price predictor. We measured the performance of the price
predictor on both CAISO and MISO data. Table 3 summarizes the
results.
6.1.3 Task predictor. Our naive task predictor had a top-1 accuracy
prediction accuracy of 46% for predicting the next 10 function calls
given the previous 10. This means that each individual function in
the predicted sequence has a 46% chance of being correct.

6.2 System-level simulation
We built a system-level simulator to explore the performance of
Information Batteries at scale. Our simulator takes as input a time-
series of energy prices, and a set of parameters that define the
performance of individual components of the system ( Table 1).
The output of the simulator is a simulated 100-day run of an IB

system, reporting 1) cyclesavail, the total amount of opportunity
power that was theoretically available for compute, 2) cyclesop, the
amount of opportunity power that was actually used for compute,
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Fig. 7. The efficacy of the price predictor at different rates of false positives
and false negatives. False positives—the mistaken identification of a period
of opportunity power—can have a large impact on overall performance.
False negatives—when the predictor fails to identify a period of opportunity
power—have a significantly smaller effect. Efficacy here is defined as the
amount of grid power used, compared to a baseline non-instrumented
system. Information batteries are only worthwhile when this number is
below the baseline (indicated with green fill).

and 3) cyclesgrid, the amount of grid power that was used for com-
pute. The run is considered successful if the amount of grid power
used for compute is less than what would have otherwise been used
in a traditional computing system.
For each 5-minute time interval, the simulator decides (based

on the provided traces and the specified performance of the price
predictor), whether or not to anticipate a period of negative-priced
power. If negative-priced power is anticipated, it “schedules” jobs.
It then records the amount of grid and opportunity power “used” in
the interval. We summarize the logic of the simulator in Figure 3.

Our initial simulation results highlight the importance of accurate
price prediction (Figure 7), and low cache latency (Figure 8), and
relatively accurate task prediction (Figure 5). We use the results from
microbenchmarking to realistically parameterize our system-level
simulator according to the metrics described in Table 1.
We then evaluate the overall effectiveness of Information Bat-

teries according to: 1) the efficiency of the system, in terms of the
amount of processing offloaded from grid power to opportunity
power, and 2) dollar cost relative to traditional batteries.
6.2.1 Energy savings. A key goal of the IB system is to make use of
opportunity power that might otherwise be wasted. Thus, a central
metric for any IB system is the amount of processing power offloaded
from non-opportunity power to opportunity power.
We measure these savings in terms of the number of machine

cycles offloaded. Figure 5 shows these results for a wind-dominant
power profile (MISO). We parameterize the simulator as follows: (1)
Memoization overhead of 1 ms (2) Task prediction accuracy of 50%;
(3) For the price predictor, false positive and false negative rates of
0.1%. The length of tasks is varied.

Note that IBs always incur more machine cycles than traditional
compute. This is to be expected, since the IB system must per-
form the same computational task with additional pre- and post-
processing. However, in these scenarios, the grid power consumed

Cache Miss 0.87 𝜇s
Cache Hit (Fetch) 2.2𝜇s
Store 34 𝜇s

Table 2. Average latency of cache hit, cache miss, and store.

Mean-Absolute Mean-Absolute
Error (Val) Error (Train)

CAISO 0.1181 0.1402
MISO 0.0745 0.0614

Table 3. Performance of the price predictor model on validation and training
data. The model performed best on MISO data, but the mean-absolute error
was low for both datasets.

by the IB system is less than that for traditional compute, since a
large fraction of the compute was offloaded to opportunity power.
The overall energy savings of the IB system is the difference be-

tween the grid power consumed in the traditional compute scenario
and the grid power consumed by the information batteries.

6.3 Cost of storage
In some scenarios, Information Batteries are more cost-effective
than traditional energy storage systems. First we explain how to
think about the storage capacity of an IB system. Then we compare
potential IB systems with conventional grid-scale battery storage.

Unlike conventional batteries, Information Batteries have both a
“charge rate” measured in Watts, corresponding to the power draw
at which precomputation can be done by a given IB system (limited
by data center capacity)—and a prediction time horizon that is not
present in ordinary batteries. In some ways this makes an IB system
incommensurable with conventional batteries.

6.3.1 IB memoization overhead. Our function-level precomputation
has an overhead of 34 𝜇s for each put, 0.87 𝜇s for each cache miss
and 2.2 𝜇s for each cache hit and retrieval on a 2.6 GHz Intel Core i7
CPU. This is extraordinarily efficient by virtue of its simplicity. For
example, any job with just one second or longer run time would
experience less than 1% overhead due to memoization.

6.3.2 Battery comparison. Consider for a moment a hypothetical
IB system that has a one day time horizon, and can predict with
perfect accuracy. The IB system can thus precompute a day’s worth
of tasks. Consider a hyper-scale data center that is 100 MW with
this one-day prediction horizon; an IB system in this data center
could store a monumental 2400MWh via precomputation alone.

It is rare for a data center to have full-day lookahead. Instead, we
might more realistically have, on average, 90 minutes prediction
ability with 90% accuracy.6 With one-hour lookahead, such a data
center could store 150 MWh, significantly more than most grid-
scale battery-based storage projects. Given the negligible overhead
of memoization, the key efficiency parameter is job prediction.
Using 90% as a canonical target efficiency, as it closely matches

lithium-ion battery efficiencies, such an IB-enabled data center

6There is little public data on workloads and scheduling; our estimate here is based
upon our experience working in such hyper-scale compute environments.
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Fig. 8. Evaluating the effect of cache latency on energy savings. Results are presented as a stacked graph, with the red fill representing the amount of grid
power used, and the green fill the amount of opportunity power. The system is only worthwhile if the amount of grid power used is below the baseline (e.g. if
the red fill remains below the dotted line). Results presented for small (100ms), medium (10s), and large (60s) jobs for cache latencies of 0-10000 ns (top row)
and 0-0.1 s (bottom row). Cache latency has a huge effect on performance, especially for shorter jobs.

would match the storage capacity of a 150,000 kWh lithium-ion stor-
age array, which, at current lithium-ion prices of $356 / kWh [38]
would cost $53.4 million.

7 CONCLUSION
In this work we have shown that Information Batteries have the
potential to provide a cost-effective means to cope with growing
renewable intermittency using large-scale computing infrastructure.
Key to the IB approach is that it is not a general-purpose solution,
but is likely to be effective for many common workloads.

7.1 Future directions
This paper merely introduces and explores one avenue of implemen-
tation and evaluation of Information Batteries. Much remains to be
studied. In particular, we believe that there are three lines of worth-
while future research on this topic: improved prediction, improved
integration into large systems, and support for the precomputation
and recombination of fragments of computational tasks.
7.1.1 Prediction. The smart grid research community has done
extensive work to improve prediction of price and power availability.
In addition, the distributed systems community has done extensive
work to characterize workloads in a wide range of settings. As we
showed, as prediction accuracy improves, the efficiency of an IB
system will improve, so there is substantial low-hanging fruit in
incorporating state-of-the-art predictors.
7.1.2 Integration. While we frame our IB system prototype as an
end-to-end system, any real-world deployment of this approach

would necessarily omit the toy compute controllers we built for
testing and instead integrate IB decision-making into an existing
compute controller (e.g., a Kubernetes controller managing a whole
data center). The criteria used by such data center operators to use
the IB approach would necessarily be dependent upon their costs,
business models, and the types of workloads they typically serve.
7.1.3 Computation. The efficiency of an IB system depends in large
part on how well jobs can be accurately predicted and precomputed.
But this precomputation need not be merely binary in nature—
indicating whether a whole task should be precomputed or not—but
instead can reflect a complex planning strategy that decomposes
compute workloads into precomputable sub-units. There remains
substantial work to be done on integrating ideas from related anal-
yses performed in dramatically-different contexts, such as return-
oriented programming, to identify which tasks can be meaningfully
fragmented and then reassembled. In addition, efficient caching
and retrieval of fragmented, precomputed results is challenging, as
the greater complexity of fragmented precomputation, the more
expensive retrieval is likely to be; this may require storage of pro-
gram control-flow graphs along with compute fragments, so as to
easily identify cached results that will meet the needs of new tasks.
Finally, our exploration in this paper leveraged compiler support
for program instrumentation, but in a real deployment it would be
ideal to support unmodified program binaries.
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