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ABSTRACT

To serve users quickly, Web service providers build infrastruc-
ture closer to clients and use multi-stage transport connections.
Although these changes reduce client-perceived round-trip times,
TCP’s current mechanisms fundamentally limit latency improve-
ments. We performed a measurement study of a large Web service
provider and found that, while connections with no loss complete
close to the ideal latency of one round-trip time, TCP’s timeout-
driven recovery causes transfers with loss to take five times longer
on average.

In this paper, we present the design of novel loss recovery mech-
anisms for TCP that judiciously use redundant transmissions to
minimize timeout-driven recovery. Proactive, Reactive, and Cor-

rective are three qualitatively-different, easily-deployable mecha-
nisms that (1) proactively recover from losses, (2) recover from
them as quickly as possible, and (3) reconstruct packets to mask
loss. Crucially, the mechanisms are compatible both with mid-
dleboxes and with TCP’s existing congestion control and loss re-
covery. Our large-scale experiments on Google’s production net-
work that serves billions of flows demonstrate a 23% decrease in
the mean and 47% in 99th percentile latency over today’s TCP.

Categories and Subject Descriptors

C.2.2 [Computer-Communication Networks]: Network Proto-
cols—TCP; C.2.6 [Computer-Communication Networks]: In-
ternetworking—Standards; C.4 [Performance of Systems]: Mea-
surement techniques, Performance attributes
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1. INTRODUCTION
Over the past few years, and especially with the mobile revo-

lution, much economic and social activity has moved online. As
such, user-perceived Web performance is now the primary metric
for modern network services. Since bandwidth remains relatively
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cheap, Web latency is now the main impediment to improving user-
perceived performance. Moreover, it is well known that Web la-
tency inversely correlates with revenue and profit. For instance,
Amazon estimates that every 100ms increase in latency cuts profits
by 1% [26].

In response to these factors, some large Web service providers
have made major structural changes to their service delivery in-
frastructure. These changes include a) expanding their backbones
and PoPs to achieve proximity to their clients and b) careful re-
engineering of routing and DNS redirection. As such, these service
providers are able to ensure that clients quickly reach the nearest
ingress point, thereby minimizing the extent to which the client
traffic traverses the public Internet, over which providers have lit-
tle control. To improve latency, providers engineer the capacity of
and traffic over their internal backbones. As a final latency opti-
mization, providers use multi-stage TCP connections to isolate in-
ternal access latency from the vagaries of the public Internet. Client
TCP connections are usually terminated at a frontend server at
the ingress to the provider’s infrastructure. Separate backend TCP
connections between frontend and backend servers complete Web
transactions. Using persistent connections and request pipelining
on both of these types of connections amortizes TCP connection
setup and thereby reduces latency.

Despite the gains such changes have yielded, improvements
through structural re-engineering have reached the point of di-
minishing returns [24], and the latency due to TCP’s design now
limits further improvement. Increasing deployment of broadband
access—the average connection bandwidth globally was 2.8Mbps
in late 2012, more than 41% of clients had a bandwidth above
4Mbps, and 11% had more than 10Mbps [2]—has significantly re-
duced transmission latency. Now, round-trip time (RTT) and the
number of round trips required between clients and servers largely
determine the overall latency of most Web transfers.

TCP’s existing loss recovery mechanisms add RTTs, resulting in
a highly-skewed client Web access latency distribution. In a mea-
surement of billions of TCP connections from clients to Google ser-
vices, we found that nearly 10% of them incur at least one packet
loss, and flows with loss take on average five times longer to com-
plete than those without any loss (Section 2). Furthermore, 77%
of these losses are repaired through expensive retransmission time-
outs (RTOs), often because packets at the tail of a burst were lost,
preventing fast recovery. Finally, about 35% of these losses were
single packet losses in the tail. Taken together, these measurements
suggest that loss recovery dominates the Web latency.

In this paper, we explore faster loss recovery methods that are
informed by our measurements and that leverage the trend towards
multi-stage Web service access. Given the immediate benefits that
these solutions can provide, we focus on deployable, minimal en-



hancements to TCP rather than a clean-slate design. Our mecha-
nisms are motivated by the following design ideal: to ensure that

every loss is recovered within 1-RTT. While we do not achieve
this ideal, our paper conducts a principled exploration of three
qualitatively-different, deployable TCP mechanisms that progres-
sively take us closer to this ideal. The first mechanism, Reactive,
retransmits the last packet in a window, enabling TCP to trigger
fast recovery when it otherwise might have had to incur an RTO.
Corrective additionally transmits a coded packet that enables re-
covery without retransmission in cases where a single packet is lost
and Reactive might have triggered fast recovery. Proactive redun-
dantly transmits each packet twice, avoiding retransmissions for
most packets in a flow.

Along other dimensions, too, these approaches are qualitatively
different. They each involve increasing levels of aggression: Reac-
tive transmits one additional packet per window for a small fraction
of flows, Corrective transmits one additional packet per window for
all flows, while Proactive duplicates the window for a small portion
of flows. Finally, each design leverages the multi-stage architec-
ture in a qualitatively different way: Reactive requires only sender
side changes and can be deployed on frontend servers, Corrective
requires both sender and receiver side changes, while Proactive

is designed to allow service providers to selectively apply redun-
dancy for Web flows, which often are a minuscule fraction of the
traffic relative to video on a backbone network. Despite the differ-
ences, these approaches face common design challenges: avoiding
interference with TCP’s fast retransmit mechanism, ensuring accu-
rate congestion window adjustments, and co-existing with middle-
boxes.

We have implemented all three mechanisms in the Linux kernel.
We deployed Reactive on frontend servers for production traffic at
Google and have used it on hundreds of billions of flows, and we
have experimented with Proactive for backend Web connections in
a setting of interest for a month. In addition, we measured them ex-
tensively. Our evaluations of Reactive and Proactive use traces of
several million flows and traffic to a wide variety of clients includ-
ing mobile devices. We base the evaluation of Corrective on realis-
tic loss emulation, as it requires both client and server changes and
cannot be unilaterally deployed.

Our large-scale experiment in production with Proactive at the
backend and Reactive at the frontend yielded a 23% improvement
in the mean and 47% in 99th percentile latency over today’s TCP.
Our emulation experiment with Corrective yielded 29% improve-
ment in 99th percentile latency for short flows with correlated
losses. The penalty for these benefits is the increase in traffic per
connection by 0.5% for Reactive, 100% for Proactive, and 10% for
Corrective on average. Our experience with these mechanisms in-
dicates that they can yield immediate benefits in a range of settings,
and provide stepping stones towards the 1-RTT recovery ideal.

2. THE CASE FOR FASTER RECOVERY
In this section, we present measurements from Google’s fron-

tend infrastructure that indicate a pressing need to improve TCP
recovery behavior. Web latency is dominated by TCP’s startup
phase (the initial handshake and slow start) and by time spent de-
tecting and recovering from packet losses; measurements show
about 90% of the connections onWeb servers finish within the slow
start phase, while the remaining experience long recovery latencies
[40]. Recent work has proposed to speed up the connection startup
by enabling data exchange during handshake [32] and by increas-
ing TCP’s initial congestion window [16]. However, mechanisms
for faster loss recovery remain largely unexplored for short flows.
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Figure 1: Mean TCP latency to transfer an HTTP response from Web
server to a client. Measurements are bucketed by packet round-trip

time between the frontend and the client.

Data Collection. We examine the efficacy of TCP’s loss recovery
mechanisms through measurements of billions of Web transactions
from Google services excluding videos. We measure the types of
retransmissions in a large data center which primarily serves users
from the U.S. East coast and South America. We selected this data
center because it has a mix of RTTs, user bandwidths, and loss
rates. In addition, about 30% of the traffic it served is for cellular
users. For ease of comparison, we also use the same data cen-
ter to experiment with our own changes to loss recovery described
in later sections. We collected Linux TCP SNMP statistics from
Web servers and measured TCP latency to clients for one week in
December 2012 and January 2013. Observations described here
are consistent across several such sample sizes taken in different
weeks and months. In addition, we also study packet loss patterns
in transactions from two days of server-side TCP traces in 2012,
of billions of clients accessing latency-sensitive services such as
Web search from five frontend servers in two of our data centers.
These measurements of actual client traffic allow us to understand
the TCP-layer characteristics causing poor performance and to de-
sign our solutions to address them.

Loss makes Web latency 5 times slower. In our traces, 6.1% of
HTTP replies saw loss, and 10% of TCP connections saw at least
one loss.1 The average (server) retransmission rate was 2.5%.

Figure 1 depicts the TCP latency in the traces (the time between
the first byte the server sent to its receipt of the lack ACK), sep-
arating the transfers that experienced loss from those that did not
experience loss. The figure buckets the transfers by measured RTT
and depicts the mean transfer latency for each bucket. For compari-
son, the figure also depicts the ideal transfer latency of one RTT. As
seen in the figure, transfers without loss generally take little more
than the ideal duration. However, transfers that experience loss take
much longer to complete—5 times longer on average.
Finding: Flows without loss complete in essentially optimal time,
but flows with loss are much slower. Design implication: TCP
requires improved loss recovery behavior.

77% losses are recovered by timeout, not fast recovery. As sug-
gested by the tail transfer latency in our traces, the time to recover
from loss can dwarf the time to complete a lossless transfer.

In our traces, frontend servers recover about 23% of losses via
fast retransmission—the other 77% require RTOs. This is because
Web responses are small and tail drops are common. As a result,
there are not enough duplicate ACKs to trigger fast recovery.2

Even worse, many timeouts are overly conservative compared to
the actual network RTT. The sender bases the length of its RTO

1A TCP connection can be reused to transmit multiple responses.
2Linux implements early retransmit that requires only one dupli-
cate ACK to perform fast recovery.
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Figure 2: CDF of the measured RTOs normalized by RTT.

upon its estimate of the RTT and the variation in the RTT. In prac-
tice, this estimate can be quite large, meaning that the sender will
not recover from loss quickly. In our traces we found that the me-
dian RTO is six times larger than the RTT, and the 99th percentile
RTO is a whopping 200 times larger than the actual RTT, as shown
in Figure 2. These high timeout values likely result from high vari-
ance in RTT, caused by factors such as insufficient RTT samples
early in a flow and varying queuing delays in routers with large
buffers [42]. In such cases, an RTO causes a severe performance
hit for the client. Note that simply reducing the length of the RTO
does not address the latency problem for two reasons. First, it in-
creases the chances of spurious retransmissions. Based on TCP
DSACK [10], our traces report that about 40% of timeouts are spu-
rious. More importantly, a spurious RTO reduces the congestion
window to one and forces a slow start, unnecessarily slowing the
transfer of remaining data.
Finding: Servers currently recover from most losses using slow
RTOs. Design implication: RTOs should be converted into fast re-
transmissions or, even better, TCP should recover from loss without
requiring retransmission.

(Single) packet tail drop is very common. The duplicate ac-
knowledgments triggered by packets received after a loss can trig-
ger fast retransmission to recover the missing packet(s). The preva-
lence of RTOs in our traces suggests that loss mostly occurs to-
wards the end of bursts. Figure 3 shows how likely a packet is to
be lost, based on its position in the burst. We define a burst as a
sequence of packets where the server sends each packet at most
500µs after the previous one. The figure shows that, with few ex-
ceptions, the later a packet occurs in a burst, the more likely it is to
be lost. The correlation between position in a burst and the prob-
ability of loss may be due to the bursts themselves triggering con-
gestive losses, with the later packets dropped by tail-drop buffers.

Figure 4 indicates, for flows experiencing loss, the probability of
having at most two packet losses. For bursts of at most 10 packets,
∼35% experienced exactly one loss, and an additional 10% expe-
rienced exactly two losses.
Finding: Many flows lose only one or two consecutive packets,
commonly at the tail of a burst. Design implication: Minimizing
the impact of small amounts of tail loss can significantly improve
TCP performance.

These findings confirm not only that tail losses are commonplace
in modern networks, but that they can cause poor end-to-end la-
tency. Next, we build upon these findings to develop mechanisms
that improve loss recovery performance.

3. TOWARDS 1-RTT RECOVERIES
In this paper, we explore three qualitatively different TCP mech-

anisms, working towards the ideal of 1-RTT loss recovery. Reac-

tive re-sends the last packet in a window, enabling TCP to trigger
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client traces.

fast recovery when it otherwise might have had to incur an RTO.
Corrective transmits a coded packet that enables recovery without
retransmission when a single packet in the coded block is lost. Fi-
nally, Proactive is 100% redundant: it transmits each data packet
twice, avoiding retransmissions for almost all packets in a flow.

Our measurements from Section 2 motivate not just a focus on
the 1-RTT recovery ideal, but have also informed these mecha-
nisms. Proactive attempts to avoid loss recovery completely. Moti-
vated by the finding that RTOs dominate loss recovery, Reactive ef-
fectively converts RTOs into fast retransmissions. Corrective is de-
signed for the common case of a single packet loss. They were also
designed as a progression towards the 1-RTT ideal: from fast re-
covery through more frequent fast retransmits in Reactive, to packet
correction in Corrective, to recovery avoidance in Proactive. This
progression reflects an increase in the level of aggression from Re-

active to Proactive and the fact that each design is subsumed by the
next: Corrective implicitly converts RTOs to fast retransmissions,
and Proactive corrects more losses than Corrective.

Finally, these mechanisms were designed to be immediately de-
ployable in a multi-stage Web service architecture, like that shown
in Figure 5. Each of them makes relatively small changes to TCP,
but different designs apply to different stages, with each stage hav-
ing distinct constraints. Reactive requires sender side changes and
can be deployed in the client-facing side of frontends to speed Web
responses. Proactive requires both sender and receiver side changes
and can be selectively applied on backends. Prompt loss recovery
is relevant for backend connections because frontends deployed in
remote, network-constrained locations can experience considerable
loss: the average retransmission rate across all our backend connec-
tions on a particular day was 0.6% (max=16.3%). While Proactive
adds high overhead, Web service traffic is a small fraction of over-
all traffic, so Proactive’s aggression adds negligible overhead (in
our measurements, latency critical Web traffic is less than 1% of
the overall video-dominated traffic). Finally, Corrective requires
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ferent aggressiveness than baseline.

sender and receiver side changes, and can apply equally to client or
backend connections. These designs embed assumptions about the
characteristics of losses observed today and about the structure of
multi-stage architectures. Section 9 discusses the implications of
these assumptions.

Despite the differences between these approaches, they face sev-
eral common challenges that arise in adding redundancy to TCP.
First, a redundantly transmitted data packet might trigger additional
ACKs and consequently fast retransmissions. Second, when a re-
dundantly transmitted data packet masks a loss, the congestion con-
trol algorithms must react to the loss. Finally, any changes to TCP
must co-exist with middleboxes [21]. In subsequent sections, we
present the design of each of our mechanisms and describe how
they address these challenges.

In the broader context (Figure 6) of other schemes that have at-
tempted to be more or less aggressive than TCP, our designs occupy
a unique niche: leveraging gentle aggression for loss recovery. As
our results show, this degree of aggression is sufficient to achieve
latency reduction without introducing network instability (e.g., by
increasing loss rates).

4. REACTIVE
In this section we present our Reactive algorithm, a technique

to mitigate retransmission timeouts (RTOs) that occur due to tail
losses. Reactive sends probe segments to trigger duplicate ACKs
to attempt to spur fast recovery more quickly than an RTO at the
end of a transaction. Reactive requires only sender-side changes
and does not require any TCP options.

The design of Reactive presents two main challenges: a) how to

trigger an unmodified client to respond to the server with appro-
priate information so as to help plug tail losses using fast recovery,
and b) how to avoid circumventing TCP’s congestion control. After
we describe the basic Reactive mechanism, we then outline an al-
gorithm to detect the cases in which Reactive plugs a hole. We will
show that the algorithm makes the sender aware that a loss had oc-
curred so it performs the appropriate congestion window reduction.
We then discuss how Reactive enables a TCP sender to recover any
degree of tail losses via fast recovery.

Reactive algorithm. The Reactive algorithm allows a sender to
quickly detect tail losses without waiting for an RTO.3 The risk of a
sender incurring a timeout is high when the sender has not received
any acknowledgments for some time but is unable to transmit any
further data either because it is application-limited (out of new data
to send), receiver window-limited (rwnd), or congestion window-
limited (cwnd). In these circumstances, Reactive transmits probe
segments to elicit additional ACKs from the receiver. Reactive is
applicable only when the sender has thus far received in-sequence
ACKs and is not already in any state of loss recovery. Further, it is
designed for senders with Selective Acknowledgment (SACK) en-
abled because the SACK feedback of the last packet allows senders
to infer whether any tail segments were lost [11, 29].

The Reactive algorithm triggers on a newly defined probe time-
out (PTO), which is a timer event indicating that an ACK is over-
due on a connection. The sender sets the PTO value to approx-
imately twice the smoothed RTT and adjusts it to account for a
delayed ACK when there is only one outstanding segment. The
basic version of the Reactive algorithm transmits one probe seg-
ment after a PTO if the connection has outstanding unacknowl-
edged data but is otherwise idle, i.e. it is not receiving any ACKs
or is cwnd/rwnd/application-limited. The transmitted segment—
the loss probe—can be either a new segment if available and the
receive window permits, or a retransmission of the most recently
sent segment, (i.e., the segment with the highest sequence num-
ber). In the case of tail loss, the ACK for the probe triggers fast
recovery. In the absence of loss, there is no change in the conges-
tion control or loss recovery state of the connection, apart from any
state related to Reactive itself.

Pseudocode and Example. Algorithm 1 gives pseudocode for the
basic Reactive algorithm. FlightSize is the amount of in-network
outstanding data and WDT is the worst-case delayed ACK timer.
The key part of the algorithm is the transmission of a probe packet
in Function handle_pto() to elicit an ACK without waiting for an
RTO. It retransmits the last segment (or new one if available), such
that its ACK will carry SACK blocks and trigger either SACK-
based [11] or Forward Acknowledgment (FACK)-based fast recov-
ery [29] in the event of a tail loss.

Next we provide an example of how Reactive operates. Suppose
a sender transmits ten segments, 1 through 10, after which there
is no more new data to transmit. A probe timeout is scheduled
to fire two RTTs after the transmission of the tenth segment, han-
dled by schedule_pto() in Algorithm 1. Now assume that ACKs
for segments one through five arrive, but segments six through
ten at the tail are lost and no ACKs are received. Note that the
sender (re)schedules its probe timer relative to the last received
ACK (Function handle_ack()), which is for segment five in this
case. When the probe timer fires, the sender retransmits segment
ten (Function handle_pto())—this is the key part of the algorithm.
After an RTT, the sender receives an acknowledgement for this

3In the rest of the paper, we’ll use the term “tail loss” to generally
refer to either drops at the tail end of transactions or a loss of an
entire window of data or acknowledgments.



Algorithm 1: Reactive.

% Called after transmission of new data in Open state.
Function schedule_pto():

if F lightSize > 1 then PTO ← 2×RTT ;
else if F lightSize == 1 then PTO← 1.5×RTT +WDT ;
PTO = min(PTO,RTO)

Conditions:
(a) Connection is in open state
(b) Connection is cwnd- and/or application-limited
(c) Number of consecutive PTOs≤ 2
(d) Connection is SACK-enabled

if all conditions hold then Arm timer with PTO;
else Rearm timer with RTO;

Function handle_pto():

if previously unsent segment exists then
Transmit new segment
F lightSize← F lightSize+ segment size

else Retransmit last segment;
schedule_pto()

Function handle_ack():
Cancel existing PTO
schedule_pto()

packet that carries SACK information indicating the missing seg-
ments. The sender marks the missing segments as lost (here seg-
ments six through nine) and triggers FACK-based recovery. Fi-
nally, the connection enters fast recovery and retransmits the re-
maining lost segments.

Detecting recovered losses. If the only loss was the last segment,
there is the risk that the loss probe itself might repair the loss, ef-
fectively masking it from congestion control. Reactive includes a
loss detection mechanism that detects, by examining ACKs, when
the retransmission probe might have masked a loss; Reactive then
enforces a congestion window reduction, thus complying with the
mandatory congestion control.4

The basic idea of Reactive loss detection is as follows. Con-
sider a Reactive retransmission “episode” where a sender retrans-
mitsN consecutive Reactive packets, all for the same tail packet in
a flight. Suppose that an episode ends when the sender receives an
acknowledgment above the SND.NXT at the time of the episode.
We want to make sure that before the episode ends the sender re-
ceives N “Reactive dupacks”, indicating that allN Reactive probe
segments were unnecessary, so there was no hole that needed plug-
ging. If the sender gets less than N “Reactive dupacks” before
the end of the episode, it is likely that the first Reactive packet to
arrive at the receiver plugged a hole, and only the remaining Reac-

tive packets that arrived at the receiver generated dupacks. In the
interest of space, we omit the pseudocode for this mechanism.

Note that delayed ACKs complicate the picture since a delayed
ACK implies that the sender will receive fewer ACKs than would
normally be expected. To mitigate this complication, before send-
ing a loss probe retransmission, the sender should attempt to wait
long enough that the receiver has sent any delayed ACKs that it is
withholding. Our sender implementation features such a delay.

If there is ACK loss or a delayed ACK, then this algorithm is con-
servative, because the sender will reduce cwnd when in fact there
was no packet loss. In practice this is acceptable, and potentially
even desirable: if there is reverse path congestion then reducing
cwnd is prudent.

4Since we observed from our measurements that a significant frac-
tion of the hosts that support SACK do not support DSACK [10],
the Reactive algorithm for detecting such lost segments relies only
on the support of basic SACK.

Pattern Reactive scoreboard Mechanism

AAAL AAAA Reactive loss detection
AALL AALS Early retransmit
ALLL ALLS Early retransmit
LLLL LLLS FACK fast recovery
>=5 L ..LS FACK fast recovery

Table 1: Recovery behavior with Reactive packets for different tail loss

scenarios (A = ACKed segment, L = lost segment, S = SACKed seg-

ment). The TCP sender maintain the received SACK blocks informa-
tion in a data structure called scoreboard. The Reactive scoreboard

shows the state for each segment after the Reactive packet was ACKed.

Implementation. We implemented Reactive in Linux kernels 2.6
and 3.3. In line with our overarching goal of keeping our mecha-
nisms simple, the basic Reactive algorithm is 110 lines of code and
the loss detection algorithm is 55 (∼0.7% of Linux TCP code).

Initially we designed Reactive to send a zero window probe
(ZWP) with one byte of new or old data. The acknowledgment
from the ZWPwould provide an additional opportunity for a SACK
block to detect loss without an RTO. Additional losses can be de-
tected subsequently and repaired with SACK-based fast recovery.
However, in practice sending a single byte of data turned out to be
problematic to implement in Linux TCP. Instead we opted to send
a full segment to probe at the expense of the slight complexity re-
quired to detect the probe itself masking losses.

The Reactive algorithm allows the source to transmit one or two
PTOs. However, one of the design choices we made in our imple-
mentation is to not use consecutive probe timeouts, since we ob-
served that over 90% of the latency gains by Reactive are achieved
with a single probe packet. Finally, the worst case delayed ACK
timer we use is 200ms. This is the delayed ACK timer used in most
of the Windows clients served from our Web server.

Reactive is also described in the IETF draft [15] and is on by
default in mainline Linux kernels [14].

Recovery of any N-degree tail loss. Reactive remedies disconti-
nuity in today’s loss recovery algorithms wherein a single segment
loss in the middle of a packet train can be recovered via fast recov-
ery while a loss at the end of the train causes a retransmission time-
out. With Reactive, a segment loss in the middle of a train as well
as at the tail triggers the same fast recovery mechanisms. When
combined with a variant of the early retransmit mechanism [4], Re-
active enables fast recovery instead of an RTO for any degree of
N-segment tail loss as shown in Table 1.5

5. CORRECTIVE
Reactive recovers from tail loss without incurring (slow) RTOs,

and it does so without requiring client-side changes, but it does
not eliminate the need for recovery. Instead, it still requires the
sender to recognize packet loss and retransmit. Proactive achieves
0-RTT loss recovery, but it has limited applicability, since it dou-
bles bandwidth usage. Further, this level of redundancy may be
overkill in many settings–our measurements in Section 2 found that
many bursts lose only a single packet.

In this section, we explore a middle way–a mechanism to achieve
0-RTT recovery in common loss scenarios. Our approach, Correc-
tive, requires both sender and receiver changes (like Proactive, un-
like Reactive) but has low overhead (like Reactive, unlike Proac-

tive). Instead of complete redundancy, we employ forward error

5The variant we propose is to allow an early retransmit in the
case where there are three outstanding segments that have not been
cumulatively acknowledged and one segment that has been fully
SACKed.



Figure 7: Timeline of a connection using Corrective. The flow shows re-

gular (solid) and Corrective packets (dashed), sequence/ACK numbers,
and Corrective option values (terms in brackets).

correction (FEC)within TCP. The sender transmits extra FEC pack-
ets so that the receiver can repair a small number of losses.

While the use of FEC for transport has been explored in the past,
for example in [9, 41, 43], to our knowledge we are the first to place
FEC within TCP in a way that is incrementally deployable across
today’s networks. Our goal is to achieve an immediate decrease in
Web latency, and thus enhancing native TCPwith FEC is important.
However, this brings up significant challenges that we now discuss.

Corrective encoding. The sender and receiver negotiate whether
to use Corrective during TCP’s initial handshake. If both hosts
support it, every packet in the flow will include a new TCP option,
the Corrective option. We then group sequences of packets and
place the XOR of their payloads into a single Corrective checksum
packet. Checksums have low CPU overhead relative to other cod-
ing schemes like Reed-Solomon codes [35]; while such algorithms
provide higher recovery rates than checksums in general, our mea-
surements indicated that many bursts experience only a single loss,
and so a checksum can recover many losses.

Corrective groups together all packets seen within a time win-
dow, up to a maximum of sixteen MSS bytes of packets. It aligns
the packets along MSS bytes boundaries to XOR them into a single
Corrective payload. Because no regular packet carries a payload
of more than MSS bytes, this encoding guarantees that the receiver
can recover any single packet loss. Corrective delays transmitting
the encoded packet by RTT

4
since our measurements indicate that

this minimizes the probability of losing both, a regular packet and
the XOR packet that encodes it.

Incorporating loss correction into TCP adds a key challenge.
TCP uses a single sequence number space to provide an ordered
and reliable byte stream. Blocking on reliable delivery of Correc-
tive packets is counter to our goal of reducing latency. For this rea-
son, a Corrective packet uses the same sequence number as the first
packet it encodes. This prevents reliability for Corrective packets
and avoids the overhead of encoding the index of the first encoded
byte in a separate header field. The Corrective packet sets a special
ENC flag in its Corrective option signaling that the payload is en-
coded which allows the receiver to distinguish a Corrective packet
from a regular retransmission (since they both have the same se-
quence number). The option also includes the number of bytes that
the payload encodes.

Corrective recovery. To guarantee that the receiver can recover
any lost packet, the Corrective module keeps the last 15 ACKed
MSS blocks buffered, even if the application layer has already con-
sumed these blocks.6 Since a Corrective packet encodes at most 16

6Packets received out-of-order are already buffered by default.

MSS blocks, the receiver can then recover any single lost packet
by computing the XOR of the Corrective payload and the buffered
blocks in the encoding range. To obtain the encoding range, the
receiver combines the sequence number of the Corrective packet
(which is set to be the same as the sequence number of the first en-
coded byte) and the number of bytes encoded (which is part of the
Corrective TCP option).

Corrective reception works as follows. Once the receiver estab-
lishes that the payload is encoded (by checking the ENC flag in
the Corrective option), it checks for holes in the encoded range. If
it received the whole sequence, the receiver drops the Corrective

packet. Otherwise, if it is missing at most MSS continuous bytes,
the receiver uses the Corrective packet to recover the subsequence
and forward it to the regular reception routine, allowing 0-RTT re-
covery. If too much data is missing for the Corrective packet to
recover, the receiver sends an explicit duplicate ACK. This ACK
informs the sender that a recovery failed and denotes which byte
ranges were lost7 via an R_FAIL flag and value in the Corrective
option. The sender marks the byte ranges as lost and triggers a fast
retransmit. Thus, even when immediate recovery is not possible,
Corrective provides the same benefit as Reactive.

If the receiver were to simply ACK a recovered packet, it would
mask the loss and circumvent congestion control during a known
loss episode. Since TCP connections may be reused for multiple
HTTP transactions, masking losses can hurt subsequent transfers.
To prevent this behavior, we devised a mechanism similar to ex-
plicit congestion notification (ECN) [34]. Upon successful Correc-
tive recovery, the receiver enables an R_SUCC flag in the Correc-
tive option in each outgoing ACK, signaling a successful recovery.
Once the sender sees this flag, it triggers a cwnd reduction. In
addition, it sets an R_ACK flag in the Corrective option of the next
packet sent to the receiver. Once the receiver observes R_ACK in an
incoming packet, indicating that the sender reduced the congestion
window, it disables R_SUCC for future packets. Figure 7 shows a
sample packet with a successful Corrective recovery.

Implementation. We implemented our prototype in Linux kernel
versions 2.6 and 3.2 in 1674 lines of code (∼7.3% of the Linux TCP
codebase). Our implementation is modularized and makes minimal
changes to the existing kernel. This separation has made it easy, for
example, to port Corrective to the Linux stack for Android devices.
We plan to make our implementation publicly available.

6. PROACTIVE
Proactive takes the aggressive stance of proactively transmitting

copies of each TCP segment. If at least one copy of the segment
arrives at the receiver then the connection proceeds with no de-
lay. The receiver can discard redundant segments. While sending
duplicate segments can potentially increase congestion and con-
sequently decrease goodput and increase response time, Proactive
is designed only for latency-sensitive services on networks where
these services occupy a small percentage of the total traffic. While
repeating packets is less efficient than sophisticated error correc-
tion coding schemes, we designed Proactive to keep the additional
complexity of TCP implementation at a minimum while achieving
significant latency improvements.

While intuitively simple, the implementation of Proactive has
some subtleties. A naive approach would be to send one copy of ev-
ery segment, or two instances of every segment.8 If the destination

7We can say that the packets were lost with confidence since the
Corrective packet transmissions are delayed (as described earlier).
8We use the term copies to differentiate them from duplicate seg-
ments that TCP sends during retransmission.



Figure 8: Timeline of a Proactive connection with TSO enabled that

loses a segment. While the Proactive copy recovers the loss, the sender

retransmits the segment due to three duplicate ACKs.

receives both data segments it will send two ACKs, since the recep-
tion of an out-of-order packet triggers an immediate ACK [6]. The
second ACK will be a duplicate ACK (i.e., the value of the ACK
field will be the same for both segments). Since modern Linux TCP
stacks use duplicate SACKs (DSACK) to signal sequence ranges
which were received more than once, the second ACK will also
contain a (D)SACK block. This duplicate ACK does not falsely
trigger fast recovery because it only acknowledges old data and
does not indicate a hole (i.e., missing segment).

However, many modern network interface controllers (NICs) use
TCP Segmentation Offloading (TSO) [21]. This mechanism al-
lows TCP to process segments which are larger than MSS, with
the NIC taking care of breaking them into MTU-sized frames.9

For example, if the sender-side NIC splits a segment into K on-
the-wire frames, the receiver will send back 2K ACKs . If K >

dupthresh and SACKs are disabled or some segments are lost,
the sender will treat the duplicate ACKs as a sign of congestion and
enter a recovery mode. This is clearly undesirable since it slows
down the sender and offsets Proactive’s potential latency benefits.
Figure 8 illustrates one such a spurious retransmission.

To avoid spurious retransmissions we disable TSO for the flows
that use Proactive and enlist the receiver to identify original/copied
segments reordered by or lost in the network.

Specifically, the sender marks the copied segments by setting a
flag in the header using one of the reserved but unused bits. Then,
a receiver processes incoming packets as follows. If the flag is set,
the packet is only processed if it was not received before (otherwise
it is dropped). In this case an ACK is generated. If the flag is not set,
the packet will be processed if it was not received before or if the
previous packet carrying the same sequence did not have the flag set
either. These rules will prevent the generation of duplicate ACKs
due to copied segments while allowing duplicate ACKs that are due
to retransmitted segments. In addition to copying data segments,
Proactive can be configured to copy SYN and pure ACK segments
for an added level of resiliency.

We implemented Proactive in Linux kernels 2.6 and 3.3 with the
new module comprising 358 lines of code, or ∼1.6% of the Linux
TCP codebase.

7. THE ROLE OF MIDDLEBOXES
We aim to make our modules usable for most connections in to-

day’s Internet, despite on-path middleboxes [21]. Reactive is fully
compatible with middleboxes since all Reactive packets are either

9For now assume that each of these on-the-wire packets generates
an ACK and that the network does not lose or reorder any messages.

retransmissions of previously sent packets or the next in-order seg-
ment. Proactive uses reserved bits in the TCP header for copied
segments which can trigger middleboxes that discard packets with
non-compliant TCP flags. However, in our experience, possibly
due to the widespread use of reserved bits and the position of fron-
tend servers relative to middleboxes, we did not observe this effect
in practice.

Corrective introduces substantial changes to TCP which could
lead to compatibility issues with middlebox implementations that
are unaware of the Corrective functionality. Our goal is to ensure
a graceful fallback to standard TCP in situations where Corrective
is not usable. Even if hosts negotiate Corrective during the initial
handshake, it is possible for a middlebox to strip the option from
a later packet. To be robust to this, if either host receives a packet
without the option, it discards the packet and stops using Corrective
for the remainder of the connection, so hosts don’t confuse Correc-
tive packets with regular data packets. Some middleboxes trans-
late sequence numbers to a different range [21], and so Corrective

uses only relative sequence numbers to convey metadata (such as
the encoding range) between endpoints. We have also designed,
but have not yet fully implemented, solutions for other middlebox
issues. Some devices rewrite the ACK number for a recovered se-
quence since they have not seen this sequence before. To solve
this problem, the sender would retransmit the recovered sequence,
even though it is not needed by the other endpoint anymore, to plug
this “sequence hole” in the state of the middlebox. Solutions to
other issues include Corrective checksums to detect if a middlebox
rewrites payloads for previously seen sequences, as well as intro-
ducing additional identifier information to the Corrective option to
cope with packet coalescing or splitting.

We could have avoided middlebox issues by implementing Cor-

rective above or below the transport layer. Integrating it into TCP
made it easier to leverage TCP’s option negotiation (so connec-
tions can selectively use Corrective) and its RTT estimates (so that
the Corrective packet transmission can be timed correctly). It also
eased buffer management, since Corrective can leverage TCP’s
socket buffers; this is especially important since buffer space is at a
premium in production Web servers.

Ideally, middlebox implementations would be extended to be
aware of our modules. For Proactive, adding support for the
TCP flag used is sufficient. Corrective on the other hand requires
new logic to distinguish between regular payloads and Corrective-
encoded payloads based on the Corrective option and flags used. In
particular, stateful middleboxes need this functionality to properly
update the state kept for Corrective-enabled connections.

8. EVALUATION
Next we evaluate the performance gains achieved by Reactive,

Corrective, and Proactive in our experiments. We begin with re-
sults from a combined experiment running Proactive for backend
connections and Reactive for client connections. We then describe
detailed experiments for each of the mechanisms in order of in-
creasing aggressiveness. First, we describe our experimental setup.

8.1 Experimental setup
We performed all of our Web server experiments with Reactive

and Proactive in a production data center that serves live user traffic
for a diverse set of Web applications. The Web servers run Linux
2.6 using default settings, except that ECN is disabled. The servers
terminate user TCP connections and are load balanced by steering
new connections to randomly selected Web servers based on the
server and client IP addresses and ports.

Calibration measurements over 24-hour periods show that



SNMP and HTTP latency statistics agree within 0.5% between in-
dividual servers. This property permits us to run N-way exper-
iments concurrently by changing TCP configurations on groups
of servers. A typical A/B experiment runs on four or six servers
with half of them running the experimental algorithm while the
rest serve as the baseline. Note that multiple simultaneous con-
nections opened by a single client are likely to be served by Web
servers with different A/B configurations. These experiments were
performed over several months.

The primary latency metric that we measure is response time

(RT) which is the interval between the Web server receiving a
client’s request to the server receiving an ACK for the last packet
of the response. We are also interested in retransmission statistics
and the overhead from each scheme. Linux is a fair baseline com-
parison because it implements the latest loss recovery techniques
in TCP literature and IETF RFCs.10

8.2 End-to-end evaluation
Since our overarching goal is to reduce latency for Web transfers

in real networks, we first present our findings in experiments using
both Reactive and Proactive in an end-to-end setting.

The end-to-end experiment involves multi-stage TCP flows as
illustrated in Figure 5. The backend server resides in the same
data center described in Section 2, but user requests are directed
to nearby frontend servers that then forward them to the backend
server. The connections between the backend and frontend servers
use Proactive, while the connections between the end users and the
frontend nodes use Reactive.11 The baseline servers used standard
TCP for both backend and client connections.

We measure RT, which includes the communication between the
frontend and backend servers. Table 2 shows that, over a two-day
period, the experiment yielded a 14% reduction in average latency
and a substantial 37% improvement in the 99th percentile, We no-
ticed that the baseline retransmission rate over the backend connec-
tions was 5.5% on Day 1 of the experiment and 0.25% on Day 2.
The redundancy added by Proactive effectively reduced the retrans-
mission rate to 0.02% for both days. Correspondingly, the mean
response time reduction on Day 1 was 21% (48% for the 99th per-
centile) and 4% on Day 2 (9% for the 99th percentile). Results from
another 15-day experiment between a different frontend-backend
server pair demonstrated a 23.1% decrease in mean response time
(46.7% for the 99th percentile). The sample sizes for the second ex-
periment were ∼2.6 million queries while the retransmission rates
for the baseline and Proactivewere 0.99% and 0.09%, respectively.

Taken in perspective, such a latency reduction is significant: con-
sider that an increase in TCP’s initial congestion window to ten
segments—a change of much larger scope—improved the average
latency by 10% [16]. We did not measure the impact of 23% re-
sponse latency reduction on end-user experience. Emulations with
Corrective in section 8.4.2, show the browser’s render start time

metric. Ultimately, user latency depends not just on TCP but also
on how browsers use the data – including the order that clients
issue requests for style sheets, scripts and images, image scaling
and compression level, browser caching, DNS lookups and so on.
TCP’s job is to deliver the bits as fast as possible to the browser.

To understand where the improvements come from, we elabo-

10This includes SACK, F-RTO, RFC 3517, limited-transmit, dy-
namic duplicate ACK threshold, reordering detection, early retrans-
mit algorithm, proportional rate reduction, FACK based threshold
recovery, and ECN.
11For practical reasons, we did not include Corrective in this experi-
ment as it requires changes to client devices that we did not control.

Quantile Linux Proactive + Reactive

25 362 -5 -1%

50 487 -11 -2%

90 940 -173 -18%

99 5608 -2058 -37%

Mean 700 -99 -14%

Sample size 186K 243K

Table 2: RT comparison (in ms) for Linux baseline and Proactive com-

bined with Reactive. The two rightmost columns show the relative la-

tency w.r.t the baseline. This experiment was enabled only for short
Web transfers, due to its increased overhead.
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Figure 9: Average latency improvement (in%) of HTTP responses with
Reactive vs. baseline Linux for two mobile carriers. Carriers and Web

applications are chosen because of their large sample size.

rate on the performance of each of the schemes in the following
subsections.

8.3 Reactive
Using our production experimental setup, we measured Reac-

tive’s performance relative to the baseline in Web server experi-
ments spanning over half a year. The results reported below repre-
sent a week-long snapshot. Both the experiment and baseline used
the same kernels, which had an option to selectively enable Re-

active. Our experiments included the two flavors of Reactive dis-
cussed above, with and without loss detection support. The results
reported here include the combined algorithm with loss detection.
All other algorithms such as early retransmit and FACK based re-
covery are present in both the experiment and baseline.

Table 3 shows the percentiles and average latency improvement
of key Web applications, including responses without losses. The
varied improvements are due to different response-size distribu-
tions and traffic patterns. For example, Reactive helps the most
for Images, as these are served by multiple concurrent TCP connec-
tions which increase the chances of tail segment losses.12 There are
two takeaways: the average response time improved up to 6% and
the 99th percentile improved by 10%. Also, nearly all of the im-
provement for Reactive is in the latency tail (post-90th percentile).

Figure 9 shows the data for mobile clients, with an average im-
provement of 7.2% for Web search and 7.6% for images transferred
over Verizon.

The reason for Reactive’s latency improvement becomes ap-
parent when looking at the difference in retransmission statistics
shown in Table 4—Reactive reduced the number of timeouts by
14%. The largest reduction in timeouts is when the sender is in the
Open state in which it receives only in-sequence ACKs and no du-
plicate ACKs, likely because of tail losses. Correspondingly, RTO-
triggered retransmissions occurring in the slow start phase reduced
by 46% relative to baseline. Reactive probes converted timeouts to
fast recoveries, resulting in a 49% increase in fast recovery events.

12It is common for browsers to use four to six connections per do-
main, and for Web sites to use multiple subdomains for certain Web
applications.
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Quantile Linux Reactive Linux Reactive Linux Reactive

25 344 -2 -1% 74 0 59 0
50 503 -5 -1% 193 -2 -1% 155 0
90 1467 -43 -3% 878 -65 -7% 487 -18 -3%

99 14725 -760 -5% 5008 -508 -10% 2882 -290 -10%

Mean 1145 -32 -3% 471 -29 -6% 305 -14 -4%

Sample size 5.7M 5.7M 14.8M 14.8M 1.64M 1.64M

Table 3: Response time comparison (in ms) of baseline Linux vs. Reactive. The Reactive columns shows relative latency w.r.t. the baseline.

Retransmission type Linux Reactive

Total # of Retransmission 107.5M -7.3M -7%

Fast Recovery events 5.5M +2.7M +49%

Fast Retransmissions 24.7M +8.2M +33%

Timeout Retrans. 69.3M -9.4M -14%

Timeout On Open 32.4M -8.3M -26%

Slow Start Retrans. 13.5M -6.2M -46%

cwnd undo events 6.1M -3.7M -61%

Table 4: Retransmission statistics in Linux and the corresponding delta

in the Reactive experiment. Reactive results in 14% fewer timeouts and
converts them to fast recovery.

Also notable is a significant decrease in the number of spurious
timeouts, which explains why the experiment had 61% fewer cwnd
undo events. The Linux TCP sender [38] uses either DSACK or
timestamps to determine if retransmissions are spurious and em-
ploys techniques for undoing cwnd reductions. We also note that
the total number of retransmissions decreased 7% with Reactive

because of the decrease in spurious retransmissions.
We also quantified the overhead of sending probe packets. The

probes accounted for 0.48% of all outgoing segments. This is a
reasonable overhead even when contrasted with the overall retrans-
mission rate of 3.2%. 10% of the probes are new segments and the
rest are retransmissions, which is unsurprising given that short Web
responses often do not have new data to send [16]. We also found
that, in about 33% of the cases, the probes themselves plugged the
only hole, and the loss detection algorithm reduced the congestion
window. 37% of the probes were not necessary and resulted in a
duplicate acknowledgment.

A natural question that arises is a comparison of Reactive with a
shorter RTO such as 2 × RTT. We did not shorten the RTO on live
user tests because it induces too many spurious retransmissions that
impact user experience. Tuning the RTO algorithm is extensively
studied in literature and is complementary to Reactive. Our own
measurements show very little room exists in fine-tuning the RTO
estimation algorithm. The limitations are: 1) packet delay is be-
coming hard to model as the Internet is moving towards wireless
infrastructure, and 2) short flows often do not have enough samples
for models to work well.

8.4 Corrective
In contrast to Reactive and Proactive, we have not yet deployed

Corrective in our production servers since it requires both server
and client support. We evaluate Corrective in a lab environment.

8.4.1 Isolated flows

Experimental setup. We directly connected two hosts that we
configured to use the Corrective module. We used the netem
module to emulate a 200 ms RTT between them and emulated both
fixed loss rates and correlated loss. In correlated loss scenarios,
each packet initially had a drop probability of 0.01 and we raised
the loss probability to 0.5 if the previous packet in the burst was

lost. We chose these parameters to approximate the loss patterns
observed in the data collection described earlier (see Section 2).
We used netperf to evaluate the impact of Corrective on various
types of connections. We ran each experiment 10,000 times with
Corrective disabled (baseline) and 10,000 times with it enabled.
All percentiles shown in tables for this evaluation have margins of
error < 2% with 95% confidence.

Corrective substantially reduces the latency for short bursts in

lossy environments. In Table 5a we show results for queries
using 40 byte request and 5000 byte response messages, similar
to search engine queries. These queries are isolated which means
that the hosts initiate a TCP connection, then the client sends a
request, and the server responds, after which the connection closes.
Table 5b gives results for pre-established TCP connections; here we
measure latency fromwhen the client sends the request. Both tables
show the relative latency improvement when using Corrective for
correlated losses and for a fixed loss rate of 2%.

When we include handshakes, Corrective reduces average la-
tency by 4–10%, depending on the loss scenario, and reduces 90th
percentile latency by 18–28%. Because hosts negotiate Corrective
as part of the TCP handshake, SYN losses are not corrected which
can lead to slow queries if the SYN is lost. If we pre-establish con-
nections, as would happen when a server sends multiple responses
over a single connection, Corrective packets cover the entire flow,
and in general Corrective provides high latency reductions in the
99th percentile as well.

Existing work demonstrates that transmitting all SYN packets
twice can reduce latency in cases of SYN loss [44].13 For our
correlated loss setting, on queries that included handshakes, we
found that adding redundant SYN transmissions to standard TCP
reduces the 99th percentile latency by 8%. If we use redundant
SYN transmission withCorrective, the combined reduction reaches
17%, since the two mechanisms are complementary.

Corrective provides less benefit over longer connections. Next,
using established connections, we evaluate Corrective’s perfor-
mance when transferring larger responses. While still reducing
90th percentile latency by 7% to 10% (Table 5c), Corrective pro-
vides less benefit in the tail on these large responses than it did
for small responses. The benefits diminish as the minimum num-
ber of RTTs necessary to complete the transaction increases (due
to the message size). As a result, the recovery of losses in the tail
no longer dominates the overall transmission time. Corrective is
better suited for small transfers common to today’s Web [16].

8.4.2 Web page replay

Experimental setup. In addition to the synthetic workloads, we
used the Web-page-replay tool [1] and dummynet [13] to replay
resource transfers for actual Web page downloads through con-
trolled, emulated network conditions. We ran separate tests for

13These redundant transmissions are similar to Proactive applied
only to the SYN packet.



Quantile Random Correlated

50 0% 0%
90 -28% -24%
99 0% -15%

Mean -8% -4%

(a) Short transmission with connection es-
tablishment (Initial handshake, 40 byte re-
quest, 5000 byte response)

Quantile Random Correlated

50 0% 0%
90 -37% 0%
99 -52% -29%

Mean -13% -7%

(b) Short transmission without connection
establishment (40 byte request, 5000 byte
response)

Quantile Random Correlated

50 -13% 0%
90 -10% 0%
99 -5% -9%

Mean -10% -1%

(c) Long transmission without connection
establishment (40 byte request, 50000 byte
response)

Table 5: Latency reduction with Corrective for random and correlated loss patterns under varying connection properties.

Quantile Linux Proactive

25 372 -9 -2%

50 468 -19 -4%

90 702 -76 -11%

99 1611 -737 -46%

Mean 520 -65 -13%

Sample size 260K 262K

Table 6: RT comparison (in ms) for Linux baseline and Proactive. The

Proactive columns shows the relative latency vs. the baseline. Proactive

was enabled only for shortWeb transfers, due to its increased overhead.

Web pages tailored for desktop and mobile clients. The tests for
desktop clients emulated a cable connection with 5Mbit/s down-
link and 1Mbit/s uplink bandwidth and an RTT of 28ms. The tests
for mobile clients emulated a 3G mobile connection with 2Mbit/s
downlink and 1Mbit/s uplink bandwidth and an RTT of 150ms.14

In all tests, we simulated correlated losses as described earlier.
We tested a variety of popular Web sites, and Corrective sub-

stantially reduced the latency distribution in all cases. For brevity,
we limit our discussion to two representative desktop Web sites,
a simple page with few resources (Craigslist, 5 resources across 5
connections, 147KB total) and a content-rich page requiring many
resources from a variety of providers (New York Times, 167 re-
sources across 47 connections, 1387KB total).

Figure 10 shows the cumulative latency distributions for these
websites requested in a desktop environment. The graphs confirm
that Corrective can improve latency significantly in the last quar-
tile. For example, the New York Times website takes 15% less
time until the first objects are rendered on the screen in the 90th
percentile. Corrective also significantly improves performance in a
lossy mobile environment as well. For example, fetching the mo-
bile version of the New York Times website takes 2793ms instead
of 3644ms (-23%) in the median, and 3819ms instead of 4813ms
(-21%) in the 90th percentile.

8.5 Proactive
While Section 8.2 presented results when Reactive in the client

connection is used in conjunction with Proactive in the backend
connection, in this section we report results using only Proactive

in the backend connections. We conducted the experiments in pro-
duction datacenters serving live user traffic, as described in Sec-
tion 8.1. Table 6 presents the reduction in response time that Proac-
tive achieves for short Web transfers by masking many of the TCP
losses on the connection between the CDN node and the backend
server. Specifically, while the average retransmission rate for the
baseline was 0.91%, the retransmission rate for Proactive was only
0.13%. Even though the difference in retransmission rates may not
seem significant, especially since the baseline rate is already small,
Proactive reduces tail latency (99-th percentile) by 46%.

What is not obvious from Table 6 is the sensitivity of response

14The connection parameters are similar to the ones used by
http://www.webpagetest.org.
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Figure 11: Reduction in response time achieved by Proactive as a func-

tion of baseline retransmission rate.

time to losses and consequently the benefit that Proactive brings by
masking these losses. The performance difference between the two
days of the experiment in Section 8.2 hinted at this sensitivity. Here
we report results across one week, allowing a more systematic eval-
uation of the relationship between baseline retransmission rate and
response time reduction. Figure 11 plots the reduction in response
time as a function of the baseline retransmission rate. Even though
the baseline retransmission rate increases only modestly across the
graph, Proactive’s reduction of the average response time grows
from 6% to 20%.

9. DISCUSSION

The 1-RTT Recovery Ideal. Even if the mechanisms described in
this paper do not achieve the ideal, they make significant progress
towards the 1-RTT recovery ideal articulated in Section 1. We did
not set out to conquer that ideal; over the years, many loss recovery
mechanisms have been developed for TCP, and yet, as our mea-
surements show, there was still significant room for improvement.
An open question is: is it possible to introduce enough redundancy
in TCP (or a clean-slate design) to achieve 1-RTT recovery without
adding instability, in order to effectively scale the recovery mecha-
nisms with growing bandwidths?

When should Gentle Aggression be used? A transport’s job is to
provide a fast pipe to the applications without exposing complexity.
In that vein, the level of aggression that makes use of fine grained
information like RTT or loss is best decided by TCP – examples are
Reactive and the fraction of extra Corrective packets. At a higher
level, the application decides whether to enable Proactive or Cor-
rective, based on its knowledge of the traffic mix in the network.

Multi-stage connections. Our designs leverage multi-stage Web
access to provide different levels of redundancy on client and back-
end connections. Some of our designs, like Proactive (but not Cor-
rective or Reactive), may become obsolete if Web accesses were
engineered differently in the future. We see this as an unlikely
event: we believe the relationship between user perceived latency
and revenue is fundamental and becoming increasingly important
with the use of mobile devices, and so the large, popular Web ser-
vice providers will always have incentive to build out backbones in
order to engineer low latency.
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Figure 10: CDFs (y ≥ 0.7) for Web site downloads on a desktop client with a cable connection and a correlated loss pattern. The first label on each

x-axis describes the ideal latency observed in a no-loss scenario.

Loss patterns. We based the designs of our TCP enhancements
on loss patterns observed in today’s Internet. How likely is it that
these loss patterns will persist in the future? First, we note that at
least one early study pointed out that a significant number (56%)
of recoveries incurred RTOs [7], so at least one of our findings
appears to have existed over a decade and a half ago. Second, net-
works that use network-based congestion management, flow isola-
tion, Explicit Congestion Notification, and/or QoS can avoid most
or all loss for latency critical traffic. Such networks exist but are
rare in the public Internet. In such environments, tail losses may be
less common, making the mechanisms in this paper less useful. In
these settings, Reactive is not detrimental since it responds only on
an impending timeout, and Corrective can also be adapted to have
this property. So long as there is loss, these techniques help trim the
tail of the latency distribution, and Proactive could still be used in
targeted environments. Moreover, while such AQM deployments
have been proposed over the decades, history suggests that we are
still many years away from a loss-free Internet.

Coexistence with legacy TCP. In our large scale experiments with
Reactive and Proactive, clients were served with a mix of experi-
ment and baseline traffic. Wemonitored the baseline with and with-
out the experiment and observed no measurable difference between
the two. This is not surprising: even though Proactive doubles the
traffic, it does so for a small fraction of traffic without creating in-
stabilities. Likewise, the fraction of traffic increased by Reactive is
smaller than 0.5% – comparable to connection management con-
trol traffic. Both Reactive and Corrective, which we recommend
using over the public Internet, are well-behaved in that they ap-
propriately reduce the congestion window upon a loss event even
if the lost packet is recovered. Corrective increases traffic by an
additional 10%, similar to adding a new flow(s) on the link; since
emulation is unlikely to give an accurate assessment of the impact
of this overhead on legacy TCP, we plan to evaluate this in future
work using a large-scale deployment of Corrective.

10. RELATED WORK
The study of TCP loss recovery in real networks is not new [7,

25, 36, 40]. Measurements from 1995 showed that 85% of time-
outs were due to insufficient duplicate ACKs to trigger Fast Re-
transmit [25], and 75% of retransmissions happened during time-
out recovery. A study of the 1996 Olympic Web servers estimated
that SACK might only eliminate 4% of timeouts [7]. The authors
invented limited transmit, which was standardized [5] and widely
deployed. An analysis of the Coral CDN service identified loss
recovery as one of the major performance bottlenecks [40].

Similarly, improving loss recovery is a perennial goal, and such

improvements fall into several broad categories: better strategies
for managing the window during recovery [7, 20, 29], detecting and
compensating for spurious retransmissions triggered by reorder-
ing [10, 27], disambiguating loss and reordering at the end of a
stream [39], and improving the retransmit timer estimation.

TCP’s slow RTO recovery is known to be a bottleneck. For ex-
ample, Griwodz and Halvorsen showed that repeated long RTOs are
the main cause of game unresponsiveness [17]. Petlund et al. [31]
propose to use a linear RTO, which has been incorporated in the
Linux kernel as a non-default socket option for “thin” streams. This
approach still relies on receiving duplicate ACKs and does not ad-
dress RTOs resulting from tail losses. Mondal and Kuzmanovic
further argue that exponential RTO backoff should be removed be-
cause it is not necessary for the stability of Internet [30]. In con-
trast, Reactive does not change the RTO timer calculation or expo-
nential backoff and instead leaves the RTO conservative for stabil-
ity but sends a few probes before concluding the network is badly
congested. F-RTO reduces the number of spurious timeout retrans-
missions [37]. It is enabled by default in Linux, and we used it
in all our experiments. F-RTO has close to zero latency impact in
our end-user benchmarks, because it is rarely triggered. It relies on
availability of new data to send on timeout, but typically tail losses
happen at the end of an HTTP or RPC-type response. Reactive does
not require new data and hence does not have this limitation. Early
Retransmit [4] reduces timeouts when a connection has received a
certain number of duplicate ACKs. F-RTO and Early Retransmit
are both complementary to Reactive.

In line with our approach, Vulimiri et al. [44] make a case for
the use of redundancy in the context of the wide-area Internet as
an effective way to convert a small amount of extra capacity into
reduced latency. RPT introduces redundancy-based loss protection
with low traffic overhead in content-aware networks [19]. Studies
targeting low-latency datacenters aim to reduce the long tail of flow
completion times by reducing packet drops [46, 3]. However their
design assumptions preclude their deployment in the Internet.

Applying FEC to transport (at nearly every layer) is an old idea.
Sundararajan et al. [41] suggested placing network coding in TCP,
and Kim et al. [23] extended this work by implementing a vari-
ant over UDP while mimicking TCP capabilities to applications
(mainly for high-loss wireless environments). Among others, Bal-
dantoni et al. [9] and Tickoo et al. [43] explored extending TCP to
incorporate FEC. None of these, to our knowledge address the is-
sues faced when building a real kernel implementation with today’s
TCP stack, nor do they address middleboxes tampering with pack-
ets. Finally, Maelstrom is an FEC variant for long-range commu-
nication between data centers leveraging the benefits of combining
and encoding data from multiple sources into a single stream [8].



11. CONCLUSION
Ideally packet loss recovery would take no more than one RTT.

We are far from this ideal with today’s TCP loss recovery. Reac-

tive, Corrective and Proactive are simple, practical, easily deploy-
able, and immediately useful mechanisms that progressively move
us closer to this ideal by judiciously adding redundancy. In some
cases, they can reduce 99th percentile latency by 35%. Reactive is
enabled by default in mainline Linux. Our plan is to also integrate
the remaining mechanisms in mainline operating systems such as
Linux, with the aim of making the Web faster.
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