
Analysis of the SPV Secure Routing Protocol:
Weaknesses and Lessons

Barath Raghavan, Saurabh Panjwani, and Anton Mityagin
University of California, San Diego

{barath,panjwani,amityagin}@cs.ucsd.edu

ABSTRACT
We analyze a secure routing protocol, Secure Path Vector (SPV),
proposed in SIGCOMM 2004. SPV aims to provide authenticity
for route announcements in the Border Gateway Protocol (BGP)
using an efficient alternative to ordinary digital signatures, called
constant-time signatures. Today, SPV is often considered the best
cryptographic defense for BGP.

We find subtle flaws in the design of SPV which lead to attacks
that can be mounted by 60% of Autonomous Systems in the Inter-
net. In addition, we study several of SPV’s design decisions and
assumptions and highlight the requirements for security of rout-
ing protocols. In light of our analysis, we reexamine the need for
constant-time signatures and find that certain standard digital sig-
nature schemes can provide the same level of efficiency for route
authenticity.

Categories and Subject Descriptors
C.2.0 [Computer Communication Networks]: Security and pro-
tection

General Terms
Security

Keywords
Routing, BGP, Secure Path Vector

1. INTRODUCTION
Today’s Internet relies upon a single protocol, the Border Gate-

way Protocol (BGP), for wide-area route propagation. Each au-
tonomous system (AS) summarizes its network as a set of IP pre-
fixes and uses BGP to inform other ASes of how to route to these
IPs. Numerous documented [18] and undocumented attacks against
BGP highlight the need for routing security. Ideal solutions to se-
cure BGP should protect against all known attacks, be incremen-
tally deployable, and impose minimal computational and commu-
nication overhead for BGP-speaking routers. Of particular interest
are protocols to provide route authenticity—a guarantee that routes
advertised by all ASes correspond to real paths through the network
learned through route announcements.

In SIGCOMM 2004, Hu, Perrig, and Sirbu proposed a mecha-
nism for securing BGP with these design constraints in mind [11].
Their protocol, Secure Path Vector (SPV), is unique in that it aims

to simultaneously provide strong route authenticity guarantees and
high performance—this is in contrast to several other proposals for
securing BGP that are either computationally intensive [12] or do
not make strong claims about security [22, 23, 24]. Due to these
qualities, SPV has enjoyed substantial interest both from the re-
search community and from industry, and is considered by many to
be the best cryptographic defense for BGP [7]; indeed, Cisco en-
couraged and supported the development of the SPV protocol [8].
Using a novel cryptographic mechanism involving constant-time
signatures and hash chains, the designers of SPV aim to prevent
attacks in which a malicious AS presents forged routing updates to
neighboring ASes by illegitimately altering received routing mes-
sages. In addition, SPV is more efficient than the secure, but com-
putationally expensive, S-BGP protocol [12].

In this paper we show that it is possible to mount attacks on SPV
with high probability. We present simple scenarios in which an ad-
versarial AS receives route announcements corresponding to two
or more paths to the same IP prefix and combines this informa-
tion to forge an illegitimate route advertisement. For example, con-
sider the AS topologies shown in Figure 1, where an AS A adver-
tises a route for an IP prefix to its neighbors; the route eventually
propagates to a malicious AS M via two different paths. In these
scenarios, our attacks enable M to forge route advertisements for
non-existent paths (shown by dotted lines). Such sub-topologies of
ASes often appear in practice: our experiments on the AS-level
Internet topology from CAIDA’s skitter project [6] indicate that
60.4% of all ASes are in a position to mount at least one of the
attacks shown in Figure 1.

Indeed, it was part of SPV’s design objective to protect BGP
from arbitrary route forgeries of this kind. Security against such
forgeries is important in the context of BGP: though routers
typically select short AS paths, route selection in BGP is based
on complex local policy often unrelated to path length. In fact,
local policy is given a higher priority than path length in the
BGP decision process [5]; ASes often select routes with longer
paths and sometimes select routes based upon intermediate AS
numbers in the received paths.1 Furthermore, BGP policies are
kept confidential by most ASes, which makes it impossible to
reason about when a routing protocol is invulnerable to certain

1Modern routers also make it easy for ASes to implement such
policies. For example, in Cisco routers the sequence of IOS com-
mands match as-path 11, set local-preference
100, and ip as-path access-list 11 permit
1234 results in setting a local preference of 100 for routes

containing AS number 1234 anywhere in the ASPATH.

V

A

B

C

M

D

(M,D,B,A)

(C,B,A)

(A)

(a)

A

B

C

(A) M V

(B,A)

(M,C,B,A)

(b)

A

B

C

M V

(M,B,A)

(A)

(C,B,A)

(c)

V

B

C D

A

M

(A)

(D,C,B,A)

(M,C,B,A)

(d)

Figure 1: Example Attack Scenarios: A is the source AS, M is the attacker, and V is the victim AS, to whom M sends forged updates.
Dotted lines indicate non-existent route segments that are forged by M in route advertisements it sends to V.

forgeries. In general, it is most desirable that protocols for securing
BGP be designed without any a-priori assumptions on the route
selection process: security should be independent of policy.

VARIANTS OF SPV. SPV’s underlying mechanism has two
variants: the basic ASPATH protector and the advanced ASPATH
protector. The basic ASPATH protector was designed to prevent
against a certain class of forgeries but was vulnerable to attacks
in which the malicious AS has multiple routes to the source (as in
our examples above). In order to fix these weaknesses and make
the protocol secure against all possible forgery attacks, the authors
of SPV modified it to obtain the advanced ASPATH protector.
Our analysis uncovers subtle flaws in the mechanism used in this
modification. We show that the advanced protector, while more
complex and less efficient than its basic variant, provides little
security improvement. In other words, the entire protocol is as
secure as its basic variant.

OTHER CONCERNS. Besides cryptographic analysis, we recon-
sider several of SPV’s design tradeoffs in Section 5. Particularly,
we find that constant-time signatures may be unnecessary for high
performance, and that SPV’s implicit attack model may make it
unsuitable for real-world deployment.

2. REVIEW
In this section, we review the security needs of BGP and the

goals of the SPV protocol.

2.1 Wide-area routing security
The Border Gateway Protocol (BGP) is the sole mechanism for

wide-area route dissemination in the Internet. Routing exists on
two planes: the data plane— along which packets are forwarded—
and the control plane— along which routes are updated. BGP op-
erates on the control plane— Autonomous Systems (ASes) use it
to disseminate routes to each other. The key mechanism used in
route dissemination is the BGP Update message, which contains
information about an IP prefix and a route, specified as an attribute
called ASPATH, via which that prefix is reachable in the network.
Each AS, upon receipt of an Update message, can opt to prepend
its AS number to the ASPATH of the message and, in turn, send
an Update, containing the prepended ASPATH, to its neighboring
ASes. Decisions regarding route forwarding (whether to propagate
a route to downstream ASes or to filter it) and ranking (choosing

the best route among multiple routes to the same prefix) is gov-
erned entirely by local policy configurations of ASes.

The problem of securing BGP in the presence of malicious par-
ties presents many challenges, and requires addressing a wide va-
riety of attack scenarios. (Butler et al. provide a thorough survey
on this topic [3].) In this paper, our focus is on a specific class of
attacks, namely, those that involve forgery of Update messages.

In BGP, ASes are only allowed to prepend their AS number to
the ASPATH attribute of already-received Update messages (or of
messages originated by them). Path forgery refers to any attack in
which a malicious AS, say M, violates this requirement, that is, cre-
ates an Update whose ASPATH is not obtained by prepending M
to ASPATHs already known to M (and convinces another AS of the
validity of such an Update).2 Such a violation can adversely af-
fect the normal execution of downstream ASes and, consequently,
of the entire protocol. Path forgery can involve truncation (the at-
tacker removes some AS numbers from a received ASPATH and
propagates the resulting, shortened path), or modification (the at-
tacker changes AS numbers on incoming ASPATHs and forwards
such modified paths), or both.

2.2 Goals of SPV
SPV is a protocol primarily designed to protect BGP from any

path forgeries using efficient symmetric key cryptography [11].
SPV’s attack model considers solitary misbehaving ASes that at-
tempt to subvert the normal execution of the protocol; that is, SPV
assumes that multiple conspiring ASes cannot mount coordinated
attacks. SPV also assumes that the links between any two ASes
are private and authenticated; that is, the adversarial AS can nei-
ther eavesdrop on nor make modifications to any communication
between two other directly-linked ASes.

3. DESCRIPTION OF SPV
In this section, we describe the SPV protocol in brief. We high-

light those aspects of the protocol which are most relevant to secu-
rity against path forgery attacks.

3.1 Constant-time signatures
Constant-time signature schemes are fundamental to the design

of SPV. A constant-time signature scheme is a weaker version of a
standard public-key signature scheme in which security is guaran-

2Hu et al. [11] use the term falsification instead of forgery.

teed against an adversary who can acquire the signatures of only a
small (constant) number of messages. For example, in a one-time
signature scheme, it is hard to forge signatures given only a single
example message-signature pair, but the scheme may be insecure
given more such pairs. In general, an m-time signature scheme
(for some constant m) resists forgeries provided that no more than
m signatures for a given key are known to the adversary. Such
signature schemes typically admit more efficient implementations
than ordinary public-key signatures.

3.1.1 M-HORS m-time signatures
SPV uses a modified version of the Hash to Obtain Random Sub-

sets (HORS) m-time signature scheme [21], which in turn is an
improvement of the BiBa signature scheme [20]. We refer to this
modified scheme as M-HORS (Modified HORS) and describe it
below. (See Figure 2(a) for an illustration.)

As with any signature scheme, M-HORS has both public and
private keys, where the private keys are used for signing and the
public keys are used for verifying signatures. In M-HORS, key
generation involves choosing a key K at random and generating N

values, v0, . . . , vN−1, with each vi = FK(i), where F is a block
cipher such as AES and N is a security parameter. K serves as the
secret key of the signature scheme and the vi’s are called private
values.

Private values are hashed using a hash function H (such as SHA-
1) into N values u0, . . . , uN−1, referred to as public values: each
ui is equal to H(vi). Finally, a hash tree is built, using H , over the
public values (that is, with these values as leaves). The root of this
hash tree, R, is the public key.

To sign a message M , the signer (who knows the secret key and,
thus, all the private values) picks a set S = {s1, s2, . . . , sn} of n

numbers in the range 0 to N − 1, based on the value H(M); n

is another security parameter. The signature of M consists of two
parts: the set of private values corresponding to set S (the set vS =

{vi}i∈S) and the smallest set U of values in the hash tree required
to verify vS (to compute R given vS). To verify a signature on
a message M (which consists of private values vS and hash tree
values U), the verifier re-computes the hash tree based on the values
vS and U and then compares the root to the public key R.3

Figure 2(a) illustrates this with an example where N = 4 and
n = 2. Suppose that a message M hashes to a set S = {0, 2}. The
signature of M consists of the set of private values vS = {v0, v2}

(black dots) and the values U = {u1, u3} of the hash tree (gray
dots). To verify the signature, one re-computes the hash tree and
checks that the root matches the public key R.

3.2 SPV setup
As part of setup in the SPV protocol, every AS A constructs a

sequence of secret values s1, s2, . . . , sl (where l equals the length
of the longest possible AS-level path that any route announcement
will traverse) using a one-way hash function H1. That is, A picks
s1 at random and computes si+ 1 = H1(si) for i = 1, . . . , l − 1.
Each si is treated as a secret key of the M-HORS scheme of Sec-

3In the original HORS scheme [21], the secret key consists of all
private values and the public key of all public values; no hash tree
or PRF applications are involved. Security is proven under the as-
sumption that H satisfies the “subset-resilience” property, which
they introduced and defined [21].

tion 3.1. Let pi denote the public key corresponding to the secret
key si. A also builds a hash tree over these public keys and the
root of this tree is labeled R (this node is used in the verification
process). The entire construction is called the basic ASPATH pro-
tector; an example with l = 4 is shown in Figure 2(b). In SPV,
a single function H is used for all hash operations; so H1 ≡ H .
(We choose to use a special notation for H1 for reasons that will
become clear in Section 4.) SPV instantiates H with the Matyas,
Meyer, and Oseas hash function construction [16] using the AES
block cipher.

3.3 Basic route forwarding
We first present a simplified version of SPV’s route forward-

ing. Update messages in SPV include, besides the usual attributes
of BGP Updates, signatures created using the ASPATH protec-
tor. Suppose that A wants to send an announcement for a prefix
to a neighbor B. A signs the path 〈B, A〉 using the secret key s1

to get a signature σ1. Then A sends an Update message having
AS P AT H = 〈A〉, tagged with σ1 and the secret key s2, to B.

On receipt of this message, B validates it by re-computing the
whole ASPATH protector. Namely, it first computes the secret keys
s3, . . . , sl from s2, uses them to compute the corresponding public
keys and then re-computes the root public key using the public keys
p1, . . . , pl (and multiple applications of H). Verification consists
of comparing the re-computed root public key with the original root
public key R, which is assumed to be known to all ASes.4

After validating the message, if B decides to forward informa-
tion about the path 〈B, A〉 to a neighbor, say C (based on its local
policies), it first signs the AS P AT H 〈C, B, A〉 under secret key s2

(using M-HORS), thus creating a signature σ2. The Update mes-
sage from B to C consists of ASPATH = 〈B, A〉, tagged with σ1, σ2

and s3. (Figure 2(b) shows these values; we use gray dots to repre-
sent the signatures σ1, σ2 and a black dot for the secret value s3.)
C validates the message in the same way as B, while also ensuring
that the path is loop-free and that B is the last AS in the ASPATH.
Further Update messages are created and propagated similarly.

If routes to A are propagated along another path (say, A sends
an update to some AS B

′ and B
′ forwards it to another AS C

′, and
so on), the same chain of keys s1, . . . , sl is used for tagging the
corresponding Updates, which means that a secret key si could
be known to multiple ASes in the network (in our example, B and
B

′ both possess s2, s3, · · · and C and C
′ both possess s3, s4, · · ·).

This sharing of keys is an undesirable feature of SPV that we ad-
dress next.

3.4 Postmodification
The full SPV protocol is more involved than the basic mecha-

nism presented above. In order to counter forgeries that could arise
due to the sharing of keys between ASes, the authors of SPV mod-
ify the basic ASPATH protector (Fig. 2(b)) into what is called the
advanced ASPATH protector (Fig. 2(d)). The advanced protector
uses a slight variant of the M-HORS scheme: each public value
ui is obtained by hashing the corresponding private value vi twice
rather than once, as shown in Figure 2(c); that is, ui = H(H(vi)).
The intermediate hash value, H(vi), is referred to as a semi-private

4In fact, R serves as a short-term public key or an “epoch” public
key and multiple such public keys are authenticated using a “multi-
epoch” public key. See the original paper for details [11].

U
0

U
1

U
2

U
3

V
0

V
1

V
2

V
3

R

K

U
01 U

23

(a) An M-HORS signature

s1

p1 p2 p3 p4

R

s2 s3 s4

(b) The basic ASPATH protector

V
0

V
1

V
2

V
3

K

R

U
0

U
1

U
2

U
3

U
01 U

23

Semi-Private values

Private values

Public values

(c) M-HORS with postmodification

R

s1

p1

s2

p2

s3

p3

s4

p4

(d) The advanced ASPATH protector

Figure 2: The use of constant-time signatures in SPV.

value. Signatures are created as in basic forwarding, except that
now any party, given the signature on a path, can modify it by “ de-
grading” some of the n revealed private values to semi-private val-
ues (by applying H once on them). The degraded signature can
still be verified but since the function H is assumed to be one-way,
no adversary can recover the original signature.

To understand how “ degrading” is used in SPV, consider again
the three-AS example from the previous subsection, as shown in
Figure 2(d). When A wishes to send an Update to B, it sends
the same message, tagged with σ1 and s2, as before. However,
before forwarding the announcement to C, B modifies σ1 by de-
grading one of the private values contained in it to get a new sig-
nature, say σ

〈C,B,A〉
1

; this is called postmodification of σ1. The pri-
vate value to degrade is determined based on the hash of 〈C, B, A〉,
H(〈C, B, A〉). The motivation for postmodification is to prevent a
downstream AS, say D, from truncating a valid route of the form
〈D, C, B, A〉 to 〈D, B, A〉 even when it knows s2 (via some other
path), since this would most likely require recovering σ1 from
σ
〈C,B,A〉
1

, which, essentially, means inverting the hash function on

a semi-private value. When C forwards the information about the
route 〈C, B, A〉 to D, it may degrade another value in σ

〈C,B,A〉
1

to get
a signature σ

〈D,C,B,A〉
1

as well as some value in σ2 to get σ
〈D,C,B,A〉
2

.
Hu et al. do not specify rules for deciding which private value

should be degraded based on a given hash. In our attacks, we use
the following natural convention: if a signature σ contains k private
values (and n− k semi-private values) and a private value needs to
be degraded in σ based on the hash h := H(p) (p being an AS-
PATH), then the first dlo g

2
(k)e bits of h are mapped to a number

i ∈ { 1, 2, · · · , k} and the ith private value is chosen for degrading.
We use the notation [h]k to denote the number i derived from the
hash h in this manner. We remark that our attacks are independent
of the convention used for degrading; any other convention would
result in the same (or possibly worse) attack probabilities.

3.5 Concrete parameters
SPV uses an instantiation of M-HORS (with postmodification)

such that it is 15 -time secure. This is justified since it is unlikely
that any AS in the Internet will receive more than 15 Updates

for the same route. 15-time security is achieved by setting N

(number of private values) to 256 and n (number of private val-
ues revealed per signature) to 6. The value of l (length of the AS-
PATH protector) is chosen to be 14 . Numerous parameters, denoted
µ0 ≥ µ1 ≥ · · · ≥ µ14, govern how private values are degraded
while routing: when a signature σ has traversed i hops, it contains
µi private values and n − µi semi-private values. (In our example,
the Update that C sends to D contains a signature σ

〈D,C,B,A〉
1 , that

has µ2 private values, and a signature σ
〈D,C,B,A〉
2 , that has µ1 pri-

vate values.) In general, any signature σp
i contains µ|p|−i−1 private

values. SPV sets µ0 = 6, µ1 = µ2 = 5 and µ3 = 4 . (The rest are
not relevant to the attacks.)

4. ATTACKS
Next we present our attacks on SPV, all of which use the same

general approach: a malicious AS M receives Update messages
corresponding to two paths, p1 and p2, originated by AS A, with
path lengths l1 and l2 respectively such that l2 > l1. M then uses
the secret key sl1+ 1 (obtained from the Update message for p1)
to “ sign in” a suitably-chosen AS into the last position of p2. The
AS number to forge is selected in a manner such that the signatures
received along p2 can be used to authenticate the forged path to the
victim AS. (Particularly, this can be done even without inverting
the hash function H or breaking M-HORS.) Using this approach,
M can perform a variety of modification or truncation attacks on
p2.

We refer to such attacks as multi-path forgeries. As we will dis-
cuss, in most scenarios, the longer the path p2 is than p1, the greater
the chance of attack success. Also, if more than one path longer
than p1 is available, the probability of attacking all paths increases.

Figures 1 (a) and (b) show example attack scenarios in which the
forgery is a multi-path modification; these forgeries are successful
with high probability if M has a sufficient number of choices for
the AS number D that it wants to forge. Figures 1 (c) and (d) show
scenarios in which multi-path truncation can be carried out; these
can occur with probability 1/6 and 1/5 respectively.

It is important to note that our attacks succeed against SPV even
in the presence of postmodification. SPV uses postmodification
with the sole objective of countering multi-path forgeries; our find-
ings, however, establish that the protocol is still weak against these
attacks.

4.1 Multi-path modification attacks
Consider the scenario shown in Figure 1(a). Suppose M re-

ceives Updates corresponding to both routes to A: 〈M, A〉 and
〈M, C, B, A〉. The Update for 〈M, A〉 contains the secret key s2;
that for 〈M, C, B, A〉 contains a signature σ

〈M,C,B,A〉
1 on the mes-

sage 〈B, A〉. The latter is a postmodified version of σ1 containing
n − µ2 = 6 − 5 = 1 semi-private value. (In fact, since SPV
sets µ1 = µ2, σ

〈M,C,B,A〉
1 is the same as σ

〈C,B,A〉
1 , the signature for

〈B, A〉 that B sends to C.)
Now, AS M can combine these two pieces of information— the

signature σ
〈M,C,B,A〉
1 = σ

〈C,B,A〉
1 and the key s2— and, with very

high probability, convince the victim V of a forged Update for the
path 〈M, D, B, A〉. First, M selects the AS number D in a manner
such that σ

〈C,B,A〉
1 can be used to obtain another postmodified ver-

sion of σ1, namely σ
〈V,M,D,B,A〉
1 . In other words, it picks D such that

the private value degraded while modifying σ1 to σ
〈C,B,A〉
1 (based

on h1 := [H(〈C, B, A〉)]n) is the same as one of the two values
that would be degraded while modifying σ1 to σ

〈V,M,D,B,A〉
1 (based

on h2 := [H(〈D, B, A〉)]n and h′
2 := [H(〈V, M, D, B, A〉)]n−1).

Thus, a good choice for D is one that ensures that either of the
hash values h2 or h′

2 equals h1. Once an AS number D with this
property has been chosen, M can modify σ

〈C,B,A〉
1 (by suitably de-

grading one of the private values in it) to get σ
〈V,M,D,B,A〉
1 . Then, M

uses the secret key s2 (received via 〈M, A〉) to forge the remaining
signatures for 〈M, D, B, A〉.

How many choices of D are good for the attack to work? If the
hash function is perfectly random (which is, in fact, the hardest sce-
nario for our attacks), the probability that h1 equals either h2 or h′

2

for any fixed value of D is exactly 2/n = 2/6 = 1/3. (This proba-
bility is obtained using a slightly stronger assumption, namely that
the map from ASPATHs to elements in {1, · · · , n} used in SPV is
perfectly random; so, in practice, the chances of success could be
better than 1/3.) This means that out of all possible choices for D,
say x, at least x/3 would be effective in the attack.

Path lengthening attacks can be mounted similarly. Consider
the scenario shown in Figure 1(b) and suppose that M wishes
to lengthen the path 〈M, B, A〉 to advertise a new (forged) path
〈M, C, B, A〉. If M receives Update messages from both 〈M, A〉

and 〈M, B, A〉, this can be achieved quite easily. The former con-
tains the secret key s2 (from which other keys s3, s4, . . . can be
computed) and the latter contains the signature σ

〈M,B,A〉
1 on 〈B, A〉

which is postmodified by B according to h1 := [H(〈M, B, A〉)]n.
The Update message for 〈M, C, B, A〉 sent to V should con-
tain a signature σ

〈V,M,C,B,A〉
1 , postmodified according to h2 :=

[H(〈C, B, A〉)]n and to h′
2 := [H(〈V, M, C, B, A〉)]n−1. As in

the previous attack, M can create such a signature if C is selected
to ensure h1 ∈ {h2, h

′
2}, which occurs with probability at least

1/3. So, if M has x different choices for the AS number C, then
about x/3 of them work for the attack.

4.2 Multi-path truncation attacks
We now show the feasibility of multi-path truncation attacks

against SPV. Consider the scenario in Figure 1(c) (the same as that
in Figure 1(a)). We argue that in this setting, M can convince V of
the ASPATH 〈M, B, A〉 (which doesn’t exist in the network) with
probability 1/6. M’s aim is to be able to forge σ

〈C,B,A〉
1 — the post-

modification of A’s signature on 〈B, A〉, σ1— as a different post-
modification σ

〈M,B,A〉
1 of the same signature. A sufficient condition

for this is that H(〈M, B, A〉) selects the same value to degrade in
σ1 as does H(〈C, B, A〉). The probability that this condition is true
is at least 1/n = 1/6. (It is exactly 1/n if the map from ASPATHs
to the set {1, · · · , n} is perfectly random.) This means that of all
possible subgraphs of the AS-level Internet topology of the kind
illustrated in Figure 1(c), at least 1/6 will succumb to this attack.

If the difference between the lengths of the paths by which
M is linked to A is greater than 2, the chance of success is
greater. Figure 1(d) shows such a scenario— two paths connect-
ing M to A are 〈M, A〉 and 〈M, D, C, B, A〉. The message from
A contains s2 as before while that from D contains σ

〈M,D,C,B,A〉
1 .

The hope now is that the value [H(〈M, D, C, B, A〉)]5 (which
determines how σ

〈C,B,A〉
1 is postmodified to σ

〈M,D,C,B,A〉
1) equals

[H(〈V, M, C, B, A〉)]5. This happens with probability 1/5 since
there are 5 private values in σ

〈C,B,A〉
1 (and one is degraded to get

σ
〈M,D,C,B,A〉
1).

In the evaluation of postmodification with respect to multi-path
truncation attacks, Hu et al. present several attack probabilities
for particular scenarios in the Internet’s AS-level topology [11];
to our knowledge, they do not consider the attack scenarios we
present. Our attacks show that postmodification can mitigate the
risk of multi-path forgeries only to a very small extent by reducing
attack probabilities by a small constant factor.

4.3 Topological analysis
To understand the feasibility of our attacks, we performed sev-

eral simulations to determine how often subgraphs such as those
in Figure 1 appear in the Internet’s AS connectivity graph. To en-
sure that the AS graph we considered reflected real Internet paths,
we opted to use AS connectivity extracted from CAIDA’s skitter
project [6]; this data reflects actual paths rather than advertised
routes. We treated each AS as a node and each visible AS connec-
tion as an edge in a graph; we performed a depth-limited breadth-
first search from each node and counted the number of times that
one of our attack scenarios appeared as a subgraph. From this, we
determined that 60.4% of all ASes are in a position to mount at
least one of the attacks shown in Figure 1. While this is only a pre-
liminary analysis, it indicates the potential scope of vulnerability.

4.4 Attack discussion
We stress that the susceptibility of SPV to attacks is not based on

weaknesses, if any, in the underlying cryptographic primitives, but
rather in how these primitives are composed in SPV. For example,
our attacks never use the fact that the M-HORS scheme in use is
15-time secure rather than secure in the standard sense of digital
signatures; in fact, the attacks never involve forging a signature for
an unknown key.

Our techniques can easily be generalized to a scenario in which
the malicious AS M receives Updates for several (more than two)
paths to A (of various lengths) and its goal is to forge Updates by
illegitimately modifying some received path. The techniques are
not applicable in the specific case wherein M wants to attack (that
is, modify or truncate) only the single shortest received path; SPV
may be secure against such attacks. However, rigorously arguing
about SPV’s security even against such specific attacks is difficult.
For example, hash chains are used in the ASPATH protector in a
non-standard manner: each secret value si in the hash chain is used
not only as an input to a hash function but also for signing mes-
sages (in M-HORS), which could affect the security of both the
hash chain and the signature scheme. It is commonly accepted that
a single key should not be used as input to multiple cryptographic
operations. In principle, it is possible to instantiate the hash func-
tion H1 used in the hash chain and M-HORS in a way such that
the former is one-way and collision-resistant, the latter is a secure
m-time signature scheme and still, an attacker who is given only
H1(sj), is able to successfully forge signatures under sj .

While it is possible to fix this particular weakness in SPV’s de-
sign quite easily5, such a fix would still not recover security against

5One possible implementation would be to replace the hash chain
with keys generated using a forward-secure pseudorandom gen-
erator (FS-PRG) [1]. This would simultaneously guarantee the
“ one-wayness” property required by the application and preserve
the pseudorandomness of the keys (which is needed for M-HORS
to be secure). Krawczyk’s approach to building forward-secure sig-

our forgery attacks. Modifying SPV’s concrete parameters can do
little to improve its security, but can significantly decrease effi-
ciency. We could increase the value of n to reduce the success
probability in our attacks, but that would require raising N to main-
tain security of M-HORS at the same level as in SPV. Increasing N

will affect not only the cost of performing signature and verifica-
tion operations, but also lead to increased bandwidth consumption
(due to an increase in signature sizes).

Manipulating the µ values used for postmodification cannot re-
duce the attack probabilities much either. Consider the setting of
Figure 1(a). Suppose that µ1, µ2, and µ3 are chosen arbitrarily
from the set {1, · · · , n} such that µ3 ≤ µ2 ≤ µ1 ≤ n. The sig-
nature σ

〈M,C,B,A〉
1

that M receives from C contains n − µ2 semi-
private values. M needs to choose its replacement AS D when
sending the path to another AS V such that these semi-private val-
ues are contained in the set of semi-private values corresponding
to σ

〈V,M,D,B,A〉
1

, which is of size n − µ3. The probability that any
fixed value of D would work for this purpose is at least:

`

n−µ3

n−µ2

´

`

n

n−µ2

´

It is straightforward to show that this quantity is minimized when
µ1 = µ2 = n/2. In SPV, n = 6 , so the smallest success proba-
bility for our attack would be

`

3

3

´

/
`

6

3

´

= 1/20 . That is, out of all
possible choices for D (which is essentially the entire space of AS
numbers), 1/20 th of them are guaranteed to succeed in the attack,
no matter how the µi values are selected.

Thus, we believe that the design of the ASPATH protector (with
or without postmodification) is unsuitable to prevent against path
forgeries, and must be replaced if strong security against forgery
attacks is desired.

5. DISCUSSION AND LESSONS
Thus far we have detailed several specific weaknesses of SPV’s

ASPATH protector. While these alone indicate that SPV is unsafe
for deployment, we also consider a more holistic view of SPV next,
and reconsider several of SPV’s design decisions.

5.1 Reevaluating constant-time signatures
In the past, protocols such as S-BGP used asymmetric signa-

ture schemes to provide strong unforgeability; unfortunately, this
comes at the price of high computational overhead. Motivated by
this bottleneck, Hu et al. use constant-time signatures in SPV due
to their significantly better performance. Irrespective of their secu-
rity, M-HORS and other constant-time signature schemes trade off
communication overhead for this speedup. This was a consequence
known to SPV’s designers; SPV incurs a network bandwidth over-
head that is a factor 2.7 3 1 greater than that of S-BGP [11].

In practice, it may be acceptable to trade off bandwidth for per-
formance. Unfortunately, another hidden trade-off of using such
signature schemes is their implementation complexity. Unlike sev-
eral asymmetric signature schemes that are self contained and stan-
dardized, M-HORS is not standard, and its use in SPV is integral
to the ASPATH protector.

natures (FSS) [14] uses the same ideas; indeed, it might be possible
to exploit specific constructions of FSS schemes to get more secure
designs for the ASPATH protector.

Furthermore, the parameters for M-HORS used in SPV trade off
security for space and performance, with natural consequences: (i)
brute-force forgeries in SPV can be carried out with probability as
high as 2−22 by any adversary (who is given 1 5 signatures under
the same signing key)6; and (ii) due to limits on the size of BGP
Update messages, at most 1 4 M-HORS signatures (using the sug-
gested parameters) can be sent in any single message. That is, SPV
can only authenticate routes with up to 1 4 hops. While this latter
constraint is minor— few Internet paths are longer than 14 hops—
its consequence in the design of SPV is more important: SPV must,
by its construction, compute a hash chain and corresponding M-
HORS signatures for all 14 hops (even if the path in question is
only, say, 2 hops) because the public key must be computed over
the longest possible ASPATH protector.

As a result of this bandwidth increase, it is natural to consider
signature aggregation schemes, since it has been shown that using
such techniques, the communication overhead of S-BGP can be re-
duced to almost constant (as opposed to linear) in the length of the
ASPATH being signed [25]. Unfortunately, unlike those proposed
for RSA-based signature schemes [15], there are no known signa-
ture aggregation techniques for constant-time signatures.

Instead of attempting to remedy this situation by tweaking M-
HORS or the ASPATH protector, we believe that protocol design-
ers should reconsider the use of constant-time signatures. One of
the primary motivations for the use of M-HORS in SPV was its
performance. However, we note that there are signature schemes
that are secure in the standard sense and simultaneously more effi-
cient than those most commonly used. One candidate is the ESIGN
scheme of Okamoto et al. [10, 19]. ESIGN is a conventional sig-
nature scheme that is significantly faster than and has comparable
security to RSA— a study conducted as part of the CRYPTREC
project by Menezes et al. found that ESIGN and RSA provide the
same security at equal key lengths [17]— though it does not double
as a public-key encryption scheme as RSA does.7 A preliminary
experimental analysis indicates that using ESIGN, it may be pos-
sible to achieve efficiency better than that of the instantiation of
M-HORS used in SPV while also assuring much better security. In
Table 1, we consider the efficiency of conventional digital signa-
ture schemes and of 1 5 -time secure M-HORS as used in SPV. We
obtained these benchmarks using a standard cryptographic library,
Crypto++ 5.2.1 [9], on a Pentium 4 2.8 GHz machine using GCC
4.0 with standard compiler optimizations (-O2) enabled. We briefl y
consider how to use ESIGN to build a fast BGP security protocol
in Section 6.

5.2 Collusion and Eavesdropping Attacks
SPV’s attack model assumes that multiple malicious ASes do not

collude with each other in an attempt to perform forgeries. While
this may hold for some subset of deployments, this assumption
does not correspond well with practical threats to BGP. For exam-

6This forgery probability presented in Section 5.1.1 of the origi-
nal SPV paper assumes that the hash function used in M-HORS
behaves as a perfectly random function, which is is stronger than
the assumption used by Reyzin to prove security of M-HORS [21],
where the hash function is assumed to satisfy only subset-resilience
(a weaker property than that of being a perfectly random function).
7ESIGN was patented in 1986 by NTT; however, this patent has
recently expired and the scheme appears unencumbered.

Operation Time

AES (per block) 0.287 µsec
M-HORS (1278 AES calls) 366 µsec

1024-bit ESIGN (sign/verify) 469 µsec/175 µsec

2048-bit ESIGN (sign/verify) 1131 µsec/457 µsec

1024-bit RSA (sign/verify) 6172 µsec/185 µsec

2048-bit RSA (sign/verify) 34482 µsec/472 µsec

Table 1: Comparison of M-HORS and standard digital signa-
tures. Note that in SPV, verifying and authenticating a route
involves calling M-HORS once for every hop in the ASPATH
protector—a total of 14 calls, which requires 1278×14 AES
calls. In protocols based on public-key signatures (ESIGN or
RSA) like S-BGP, route authentication involves one signing op-
eration and route verification ` signature verification opera-
tions, where ` is the length of the route; most routes are much
shorter than 14 hops. Thus, using ESIGN may enable us to
outperform SPV.

ple, there are several instances in which numerous ASes are owned
and operated by a single organization and such ASes can trivially
mount coordinated attacks on the protocol. (Even if such ASes
were not themselves malicious, if their routers were compromised,
an attacker could wield substantial power.) By colluding, ASes can
share keys, signatures, and any topological information that they
know. Such an exchange is potentially useful to forge routes that
are completely non-existent in the network.

Collusion attacks are simple to mount against SPV. For example,
it is possible for two malicious ASes M1 and M2 (that are col-
luding with one other) to introduce (or “ sandwich”) arbitrary AS
numbers between themselves and to propagate ASPATHs of the
form 〈M1, X, M2, ∗ 〉 even when X is not connected to either M1

or M2. Note that such “ sandwiching” attacks do not work against
S-BGP [12], soBGP [24], or psBGP [23], which require that every
AS sign Updates using its own secret key (and not a secret key sent
to it by a neighbor).

While such collusion attacks were expected to be possible by
SPV’s designers, another assumption in SPV’s model is more insid-
ious: its reliance on encrypted, authenticated AS-to-AS channels.
Clearly, if SPV is implemented without secure AS-to-AS links, any
eavesdropper can use the secret keys sent between ASes to its ad-
vantage and forge almost arbitrary ASPATHs. Combined with a
TCP hijacking attack [2], a malicious entity eavesdropping on a
link (A, B) could even convince another AS X of the validity of
the ASPATH 〈X, Y, B, A〉 where Y is a neighbor of X, even though
there is no such path— again, such attacks are not possible against
other protocols [12, 23, 24] because they do not send secret keys
between ASes. Hu et al. suggest that a protocol like IPSec be used
to secure AS-to-AS channels [11]. This requirement seems reason-
able, but we note that it too has a subtle consequence: AS-to-AS
authentication and key distribution are required. An important de-
sign goal of SPV was to simplify key management. Unfortunately,
as a result of IPsec, ASes must perform pairwise authentication
with each neighbor and establish a secret key, and thus, for tier 1
ISPs, this would require thousands of security associations. Alter-
natively, they could have simply received authenticated public keys
for thousands of other ASes and used S-BGP.

6. FUTURE DIRECTIONS
In this paper, we have presented a security analysis of the SPV

protocol [11] for securing BGP, and have uncovered attacks that
we believe should be guarded against before SPV is considered for
deployment. In light of our analysis of SPV and its use of constant-
time signatures, we believe that a simple step can be made to im-
prove SPV, albeit in its current restricted security model. Partic-
ularly, we can modify an alternative protocol suggested by Hu et
al. (that combined elements of SPV and S-BGP to increase the de-
ployability of S-BGP [11]) as follows: instead of implementing a
hash chain, implement a certificate chain of digital signatures that is
generated “ on-the-fl y” . That is, each AS A generates a (short-lived)
asymmetric keypair (sk1, p k1) for the next hop B in the ASPATH
and certifies p k1, along with the corresponding ASPATH 〈A, B〉,
using its own secret key (say sk0). B then generates a keypair
(sk2, p k2) for the succeeding AS in the ASPATH, say C, and uses
the key sk1 (given to it by A) to certify p k2 and the path 〈A, B, C〉.
This process is then repeated for every hop in the ASPATH; the
corresponding certificates and public keys are passed along at ev-
ery stage. All signature keypairs, except the one for the originating
AS, would have a short life (like in SPV, they can be regenerated
for every new route propagation), so 1024-bit ESIGN would pro-
vide more than enough security while retaining efficiency; 2048-bit
ESIGN can be used for longer-lived prefix keys. It is quite likely
that such a protocol will provide both better security and perfor-
mance than SPV.8

While it may be possible to patch SPV in this manner, we be-
lieve that routing security must be formalized using appropriate
cryptographic definitions so we can analyze the security of exist-
ing protocols, including SPV. Despite the extensive literature on
securing BGP, there seems to have been little work on this subject.
(Buttyán et al. have taken a step toward the provable security of
ad-hoc wireless routing protocols [4], which are considerably dif-
ferent from BGP.) This gap may exist due to the inherent difficulty
of modeling BGP security accurately. For example, as we have
noted, collusion between multiple malicious ASes cannot be ne-
glected in practice. Furthermore, ASes cannot be treated as atomic
routing entities, as most ASes are composed of many routers, each
advertising different BGP routes to neighbors. While these are only
examples of complicating factors, they indicate that developing an
adequate model of routing security is a large task in itself, though
such a model is necessary if we are to have confidence in secure
routing protocols in the future.

Acknowledgements
Many thanks to Nick Feamster, Eike Kiltz, Yoshi Kohno, Priya Ma-
hadevan, Daniele Micciancio, David Moore, Adrian Perrig, Alex
Snoeren, and Patrick Verkaik for insight and feedback.

7. REFERENCES
[1] M. Bellare and B. Yee. Forward security in private key cryptography.

In Proceedings of CT-RSA, Apr. 2003.

8In joint work with Kiltz [13], we propose a new cryptographic
primitive called append-only signatures (AOS), which provides an
effective abstraction for the notion of such certificate chains. We
also present several instantiations of AOS and discuss how the
primitive is useful in this context.

[2] S. M. Bellovin. Security problems in the TCP/IP protocol suite.
SIGCOMM CCR, 2(19), 1989.

[3] K. Butler, T. Farley, P. McDaniel, and J. Rexford. A survey of BGP
security: Issues and solutions. Technical Report TD-5UGJ33, AT&T
Research, Apr. 2005.

[4] L. Buttyán and I. Vajda. Towards provable security for ad hoc routing
protocols. In Proceedings of ACM SASN, Oct. 2004.

[5] M. Caesar and J. Rexford. BGP routing policies in ISP networks.
Technical Report UCB/CSD-05-1377, University of California,
Berkeley, Mar. 2005.

[6] CAIDA Skitter Project. http://www.caida.org/tools/
measurement/skitter/.

[7] H. Chan, D. Dash, A. Perrig, and H. Zhang. Modeling adoptability of
secure BGP protocols. In Proceedings of ACM SIGCOMM, Sept.
2006.

[8] Cisco Systems. Personal communication, Apr. 2006.
[9] Crypto++ library.

http://www.eskimo.com/˜weidai/cryptlib.html.
[10] A. Fujioka, T. Okamoto, and S. Miyaguchi. ESIGN: An efficient

digital signature implementation for smart cards. In Proceedings of
EUROCRYPT, Apr. 1991.

[11] Y.-C. Hu, A. Perrig, and M. Sirbu. SPV: secure path vector routing
for securing BGP. In Proceedings of ACM SIGCOMM, Sept. 2004.

[12] S. Kent, C. Lynn, and K. Seo. Secure border gateway protocol
(S-BGP). IEEE Journal on Selected Areas in Communications, 18(4),
2000.

[13] E. Kiltz, A. Mityagin, S. Panjwani, and B. Raghavan. Append-only
signatures. In Proceedings of ICALP, July 2005.

[14] H. Krawczyk. Simple forward-secure signatures from any signature
scheme. In Proceedings of ACM CCS, Nov. 2000.

[15] A. Lysyanskaya, S. Micali, L. Reyzin, and H. Shacham. Sequential
aggregate signatures from trapdoor permutations. In Proceedings of
EUROCRYPT, May 2004.

[16] S. Matyas, C. Meyer, and J. Oseas. Generating strong one-way
functions with cryptographic algorithms. IBM Technical Disclosure
Bulletin 27:5658-5659, 1985.

[17] A. Menezes, M. Qu, D. Stinson, and Y. Wang. Evaluation of security
level of cryptography: ESIGN signature scheme. CRYPTREC
Project, Japan, Jan. 2001.

[18] O. Nordström and C. Dovrolis. Beware of BGP attacks. SIGCOMM
CCR, 34(2), 2004.

[19] T. Okamoto and J. Stern. Almost uniform density of power residues
and the provable security of ESIGN. In Proceedings of ASIACRYPT,
Nov. 2003.

[20] A. Perrig. The BiBa one-time signature and broadcast authentication
protocol. In Proceedings of ACM CCS, Nov. 2001.

[21] L. Reyzin and N. Reyzin. Better than BiBa: Short one-time
signatures with fast signing and verifying. In Proceedings of ACSIP,
July 2002.

[22] L. Subramanian, V. Roth, I. Stoica, S. Shenker, and R. Katz. Listen
and whisper: Security mechanisms for BGP. In Proceedings of
USENIX/ACM NSDI, Mar. 2004.

[23] T. Wan, E. Kranakis, and P. van Oorschot. Pretty secure BGP
(psBGP). In Proceedings of ISOC NDSS, Feb. 2005.

[24] R. White. Securing BGP through Secure Origin BGP (soBGP). The
Internet Protocol Journal, Sept. 2003.

[25] M. Zhao, S. W. Smith, and D. M. Nicol. Aggregated Path
Authentication for Efficient BGP Security. In Proceedings of ACM
CCS, Nov. 2005.

