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Abstract
Agriculture is a designed system with the largest areal footprint of any human activity. In some cases, the designs within agriculture 
emerged over thousands of years, such as the use of rows for the spatial organization of crops. In other cases, designs were 
deliberately chosen and implemented over decades, as during the Green Revolution. Currently, much work in the agricultural 
sciences focuses on evaluating designs that could improve agriculture’s sustainability. However, approaches to agricultural system 
design are diverse and fragmented, relying on individual intuition and discipline-specific methods to meet stakeholders’ often semi- 
incompatible goals. This ad-hoc approach presents the risk that agricultural science will overlook nonobvious designs with large 
societal benefits. Here, we introduce a state space framework, a common approach from computer science, to address the problem of 
proposing and evaluating agricultural designs computationally. This approach overcomes limitations of current agricultural system 
design methods by enabling a general set of computational abstractions to explore and select from a very large agricultural design 
space, which can then be empirically tested.
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Over the past half-century, humanity has rapidly innovated to address its evolving needs. Agriculture is a notable example facing the 
acute and dynamic challenges of a changing climate, urbanization, evolving diets, and global biodiversity loss. We propose a frame-
work that combines computational state space search with agriculturalist intuition such that any potential value proposition can be 
assessed for its potential to meet societal goals.
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Agricultural scientists propose and evaluate agricultural designs 
under many forms of uncertainty. Climate change has introduced 
bioclimatic instability. Consumer preferences and markets shift 
rapidly. Changes in geopolitics affect what inputs are available. 
Under all of this change, agricultural scientists must propose 
and evaluate new designs that adapt agriculture to these highly 
uncertain environments (1–5).

Current methods for agricultural design rely heavily on field ex-
periments or domain-specific models. While such approaches are 
useful to address certain questions, they are limited in the 
breadth of designs they can consider. In the case of field experi-
ments, designs can take years to decades to evaluate; in the 
case of domain-specific models, they are often only applicable to 
a limited number of species under a limited number of spatial 
and temporal configurations (3, 6).

Existing approaches from computer science can be adapted to 
explore and evaluate a substantially larger number of potential 
designs, as has been achieved in other disciplines such as drug de-
sign, aerospace, and land use planning (7, 8). The need for a 
computer-automated design approach is particularly true for 
agricultural systems with extreme complexity and high levels of 
social, bioclimatic, and technological uncertainty (9). In such a 
high-dimensional system, the universe of possible agricultural 
system configurations is impossible to explore exhaustively to 
identify optimal outcomes, particularly with existing agricultural 
research techniques.

Here, we describe one approach—state spaces—for describing 
and searching this universe of possible agricultural system de-
signs, proposing both familiar and yet-unimagined designs, and 
evaluating their outcomes. This approach, borrowed from the 
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domains of computer science and complexity research, represents 
agricultural systems as states, inputs, and outputs; agents and forces 
that act upon these systems; and goals and objectives in a single 
commensurable way.1 The approach can flexibly be applied across 
the wide range of agriculturally relevant scales—from genes to eco-
systems and days to decades—to address challenges found across 
most of the disciplines of agricultural science. We anticipate that 
this framework will aid in proposing designs for empirical research 
that are resilient under high levels of uncertainty.

In this paper, we describe the state space framework and its 
components, including state space representation, state transition 
functions, state transition accounting, and state evaluation, and 
how these building blocks can be used to propose and evaluate agri-
cultural system designs. Then, we illustrate how the framework 
can be applied across cultivar development, cropping systems 
agronomy, and within-season precision agriculture management.

State spaces
A state of a system is a single possible configuration of that system 
(Box 1). The state space of an agricultural system is then the collec-
tion of all possible states of the system.2 A state may represent, for 

example, a field at a moment in time or a given generation of a 
population under selection for breeding. In these examples, the 
state space represents the agricultural system under study, e.g. a 
cropping system or a breeding program. Critically, the state space 
includes states beyond those that have been observed and is delim-
ited only by what is biophysically possible.3 All that is required is 
that a process exists by which states of the system can 
be encoded, even if hypothetical or unknown. Depending on the ap-
plication, this can be fine-grained (e.g. including details about indi-
vidual plant root structures in soil), coarse-grained (e.g. including 
only a few environmental variables at the decadal scale), or some-
where in between. Importantly, the state space approach is agnos-
tic to how states are represented, requiring only that they are.

Consider a specific example of cropping systems design. The 
goal for a specific study could be to specify the most productive 
crop rotation for a geography. States can be defined at two differ-
ent, nested spatial scales. The first is the landscape (Fig. 1A). The 
second is the field (Fig. 1B). At the landscape scale, we show 5 
states that are made up of the crop rotation states at the field 
scale; this is only a small subset of the possible landscape states. 

Box 1. 

Understanding state spaces. A) A discrete example of state transitions of a chess board, specifically, the opening sequence known as 
the Queen’s Gambit. This sequence provides a known example of a series of states that provides an advantage to a specific player. This 
abstraction of states, state spaces, and state transitions that advantage a scenario can be used when exploring any system, such as an 
agroecological system. B) Identifying a route between two different cities. Tools such as Google Maps leverage the concept of state 
spaces by having accounting functions for the value (cost) of any given road segment, making use of edge weights and an agent/algo-
rithm to identify a reasonable path between locations, where the agent/algorithm operates on an (internal) summary of the under-
lying ground truth from Google’s mapping infrastructure (e.g. Street View cars) and public data. A reasonable path is typically 
intuitively defined by a person, but the goal of defining the transitions is to make the implicit assumptions explicit and enable gen-
eralizability of both representations and the agents/algorithms that act upon them. In this analogy, cities/locations are states, and 
the state space includes all cities/locations in the region; the transition functions are road segments from one city to another. It is some-
times the case that a desirable result of state transitions (e.g. arriving at Darwin) will go through undesirable intermediate states (e.g. 
The Outback).

1 We build upon computer science concepts such as finite automata (10), 
state machines (11), and program model checking (12).

2 A state space can be thought of as being a graph, where states are nodes 
and edges are transitions between states; transition functions define a set of 

transitions that can occur. Summary functions perform aggregation of groups 
of nodes into single nodes in a coarser-grained version of the graph.

3 For state spaces to be computationally interesting, they must be compu-
tationally representable; any computational methods must have state represen-
tations to compute over. In most real-world systems, a difficulty exists: 
complete representation of all world states is typically impossible, and no par-
ticular scheme of representation is obviously correct or best.
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Fig. 1. A) Simulated landscape states each year contains 9 landscapes which contain either wheat (w), soybean (s), or corn (c) these states change 
between years. B) Each field change between years can be represented as a count, a probability, and weighted edge graph. C) Using accounting hooks, the 
value of each transition can be accounted for helping to explain the probability of change. D) A design agent can explore the transition history and then 
identify potential states and move between states of different probabilities to create new configurations.
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At the field scale, we can look historically and represent the state 
space as a Markov model, which describes both the possible crop 
choices and the likelihood of transition from one crop choice to an-
other. The state space transitions in this representation, of each 
field in this landscape, are the likelihood of transitioning from 
corn to corn, corn to soybeans, soybeans to wheat, and so forth.

Transition functions
Given suitably represented states, it becomes possible to define 
state transitions (i.e. mathematical functions) (Fig. 1C). These are 
the permissible (e.g. physically possible) transitions from one state 
to another. To the extent that such transitions are not idiosyncratic 
but follow predictable patterns, they can be represented as func-
tions that map from an input state to an output state.4 In the lan-
guage of graph theory, if each state is a node in a graph, then 
edges represent potential transitions. For an agricultural system, 
we might have a transition function representing the effects of irri-
gation (taking a set of drier states to wetter ones), fertilization (tak-
ing a set of states with lower nutrients to higher), crop selection, 
and so on. Transition functions are crucial to understand which state 
transitions are considered possible and to represent biophysical 
processes computationally.5 Accounting hooks are computational 
functions (e.g. simple formulas or even arbitrary pieces of code) 
that can be adjunct to transition functions, enabling the account-
ing of the costs and benefits as the agricultural system is trans-
formed through a series of state transitions.

Software system modularity
The framework enables the transformation of agricultural system 
design over an infinite state space into tractable and practical sum-
maries that can be operated upon by well-understood agent-based 
and algorithmic techniques (Fig. 2). Many of these summarization 
and transition functions have long been implicit in the agricultural 
sciences, and through this framework we make them explicit: a 
summary function could simply encode and combine the human- 
level understanding of the states of an agricultural system (for ex-
ample, the spatial arrangement of a farm and the sequence of 
its crops at a timepoint during a growing season) with a lower-level 
representation such as a space-time cube of the land and its 
constituent parts. Such an approach to encoding low-level state 
representations in summarized forms has been the basis for suc-
cess in the applications of artificial intelligence to general game 
playing problems as well as the success of general-purpose lan-
guage models (7). This is because the output of a summary function 
is simply another, more coarse-grained state space, upon which 
transition functions (between these higher-level states) can be de-
fined (Fig. 2). Thus, summary functions enable aggregation toward 
coarser representations that are more computationally tractable.6

There are four benefits to this summarization approach. First, it 
makes explicit the summarization and categorization of agricultur-
al systems that is and always has been taking place (13). Second, by 
defining summarization functions and their output state spaces, it 
produces reusable high-level representations that enable 

modularity of agents that act upon those representations. Third, 
higher-level summary representations of state spaces are often 
more understandable by scientists and practitioners, enabling fast-
er improvement and verification of the results of the design system. 
Fourth, much of the low-level representation of a state space is like-
ly irrelevant for some specific context and retaining that low-level 
state representation will result in computational intractability; 
summarization enables agents to act upon solely the components 
that are relevant for their decision-making, lowering computation-
al complexity (Fig. 2). As we progress toward more simplified and 
coarse state spaces, the framework makes it possible for existing 
techniques in the computer science literature, whether 
Reinforcement Learning, Random Forest Decision Trees, or deter-
ministic or heuristic techniques, to act upon the state representa-
tion to explore the transition between states given some 
high-level objective. Regardless of technique, these form the basis 
of state spaces required for design automation.

Designing agricultural systems with 
state spaces
The last component required for design automation using state 
spaces is the creation of a design agent (Fig. 1D). There are many 
prior definitions of design agent. Here, we define a design agent 
as any program that has the ability to execute a transition func-
tion in order to explore the designs within a state space. There 
are many ways to operationalize this definition of an agent, 
from one that executes transitions in a state space at random to 
one that does so deliberately using utility theory (14). Regardless 
of the specific approach to building a design agent, the agent 
will need to be built with significant consultation with local stake-
holders to parameterize utility functions (4, 15–17).

For example, an agent may be used to design nitrogen applica-
tion rates and balance the tradeoff between nitrogen losses and 
grain yield, where larger nitrogen fertilizer applications increase 
yield with diminishing returns and rapidly increase nitrogen losses 
that degrade water quality (18). Here, a state is the field given a spe-
cific amount of nitrogen applied, the cost of transition is the cost of 
increasing or reducing nitrogen application, and the benefit is some 
weighting between water quality and grain yield outcomes. A 
utility-based design agent could select new states (e.g. combina-
tions of fertilizer rate, fertilizer form, resulting crop yield, and water 
quality), estimate the likelihood of reaching these states (e.g. sub-
ject to variable weather, application timing, etc.), and the costs of 
transition and resulting benefits (e.g. cost of new equipment, differ-
ent form, etc.), ultimately predicting high-value nitrogen rates and 
outcomes across a landscape. However, this utility agent is only 
one potential agent. One could instead employ a random design 
agent to approximate the range of possible nitrogen losses and 
yields based on simulated nitrogen rate configurations and thus 
provide a benchmark for the current state of the agricultural 
system.

Critically, high-accuracy forecasts of agricultural outcomes are 
not necessary for successful application of the state space frame-
work and design agent. There are two reasons for this. First, it is 
possible to create agents that generate appealing and useful de-
signs without any notion of how the world works, as is the case 
across many large language models and game playing agents. 
Agents could be instead trained by observing humans engage in 
design or by designing against themselves. For example, genera-
tive AI techniques have successfully created new works of art 
(19) and literature (20). Designing agricultural systems is a natural 
extension to success on other agricultural challenges such as 

4 Transition functions can encode management actions taken on the land, 
environmental modeling (e.g. plant, weather, or climate models) or, more gen-
erally, anything that can cause a change in the state of the system.

5 The transition functions also implicitly define a reachable set of states of 
the state space given some starting state; it is important not to overly constrain 
the transition functions because this will artificially prevent evaluation of and/ 
or traversal through some particularly good or bad states in the state space.

6 For example, the percentage of fields in a landscape growing each crop 
may be such a coarser representation. State spaces need not be spatial in 
nature.
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automatic weeding (21), sorting produce (22), and managing farms 
(23). The strength of generative AI techniques is they can efficient-
ly generate plausible and desirable output in high dimensionality 
spaces, meaning such techniques can be effective for generating 
designs using our state space framework.

Second, in cases where accurate biophysical prediction mat-
ters, the emphasis for a successful agent is primarily with tran-
sitions among states. In this second, explainable approach to 
building a design agent, a major research goal will be developing 
“world models” to estimate the likelihoods of state outcomes giv-
en a transition function. For example, to estimate the likelihood 
of yield and water quality outcomes a design agent does not 

need exact point predictions of a state to evaluate potential 
new states and transition functions, only accurate likelihood es-
timates that a state can be reached given a transition function 
and a value if it were to be reached. Many methods will produce 
such likelihood estimates. Most rely on Monte Carlo simulation 
with varying input parameters for models. This model require-
ment punctuates the need for general purpose and scalable 
models of agricultural systems that are parameterized automat-
ically for different geographies and design objectives. The ability 
of design agents to handle uncertainty is a major feature of this 
state space approach. If the outcomes of transitions between 
states are highly uncertain, so long as there is an accurate 

Fig. 2. State summarization for agricultural state spaces. Here, a multistage transformation of an infinite complexity agricultural state space is 
transferred into practical summaries that can be operationalized using well understood agent techniques. Transition functions apply within a single 
level of representation, describing the pathways for transition from one state to another (and can have associated costs that are accounted for). The data 
can be of any level of complexity (e.g. mapping layers, images, yield, ecosystem services). Summarization enables agents to act upon solely the 
components that are relevant for their decision-making, which is described by the user. This flexible framework allows for modularity for use cases that 
are of interest to any scientist.
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evaluation of the likelihood of reaching each state and a value of 
the target state, the state space and design agent will provide ro-
bust design recommendations.7

Example applications
We describe three potential application areas. For each, we de-
scribe how agricultural scientists currently approach the design 
problem within each area. Then, we outline how the problem 
area maps into the state space framework. Finally, we end each 
with a description of insights the state space framework provides.

Breeding
Description of the design problem
Plant breeders make selections on genetic variation for target 
traits. Consider new cultivar development for biotic or abiotic 
stress tolerance. First, a source of tolerance must be identified, 
which can require screening hundreds or thousands of acces-
sions. Next, experimental populations are developed, which re-
sult in tens of thousands of progeny. Crosses with tolerant 
parents may cause a population to initially fall in performance, 
which has a somewhat implicit, well understood definition that 
we aim to make explicit, requiring several generations to recover 
good yield and quality characteristics (24, 25). Progress depends 
on the size of the population, selection intensity, and genetic 
variability for the target trait. Current strategies for breeding in-
clude multienvironment trials to sample target populations of 
environments (26), genomic prediction modeling (27), and speed 
breeding (28).

State space description of the problem
The transition function for the state space is one cycle of selection 
and each generation can be represented as a summarized state of 
individual plants. Drawing upon concepts from evolutionary biol-
ogy, each generation can be evaluated by a design agent based on 
its location on a fitness landscape (28). The ability to transition be-
tween states, or traverse the fitness landscape, depends on the 
genetic features of the trait (trait architecture and heritability), 
the characteristics of the species (e.g. the mating system: clonal, 
outcrossing, selfing), and the current state of the population 
(where it is located on the landscape). As the design agent calls 
the transition function to move the population through the state 
space, the ability of the design agent to recover specific desired 
properties depends on the outputs associated with various state 
transitions.

Novel insights into the problem area from state spaces
Breeders, in many respects, have been using methods that are 
akin to state spaces to optimize selection of new material (29).8

However, explicitly framing crop breeding using a state space ap-
proach has the potential to overcome the longstanding challenge 
of interoperability with other subdisciplines in the agricultural 

sciences (e.g. cropping systems design), if they are also framed us-
ing state spaces. By taking the state space perspective, this inter-
disciplinary interfacing can readily make use of emerging 
discipline-specific approaches (e.g. genomics and physiological 
models for crop prediction (30, 31)) to operate as transition func-
tions that map one state to another. A major challenge to applica-
tion of the state space approach in the breeding context is that the 
design agents’ utility function may require observing the process 
of breeding and selection for multiple traits simultaneously, mak-
ing gains per cycle small, and could thus slow the generation of 
the plant material needed in a working breeding program (32). 
Using more species and broadening the state space search may 
overcome this challenge [e.g. (33)]. More generally, as a more com-
prehensive understanding emerges about the underlying proc-
esses of crop physiology and genetics, current and future 
genome to phenome models may be readily swapped in and out 
of this framework.

Cropping systems
Description of the design problem
A preliminary evaluation of a new cropping system design re-
quires a minimum of three site years; a longer study is necessary 
to address emerging challenges including resilience to climate 
variation. An exceptionally large number of potential cropping 
system designs emerge given species, cultivars, and management 
choices available in a single environment.

State space description of the problem
A current long-term research program is adapting cropping sys-
tems to increasingly erratic weather in the western US corn belt, 
which is currently dominated by the corn-soybean rotation (34). 
This experiment can test five annual crop rotations of up to 4 
years in length with a subset of seven annual crops using locally 
common management. However, a total of 721 rotations of up 
to 4 years are possible. While some of these may be more favor-
able than the five currently being studied, evaluating them all is 
infeasible for a long-term experiment that captures sufficient 
weather variation.

Novel insights into the problem area from state spaces
The state space framework can guide the proposal and evaluation 
of unstudied rotations. One might combine crop models with soil 
physical and nutrient models to infer crop and soil outcomes 
based on weather and known or inferred rotational effects in or-
der to establish the state transition functions (35). Management 
practices, including planting date, fertilizer inputs, or the addition 
of cover crops or intercropped forage legumes might also be varied 
using data from nearby experiments (36). Transition functions 
would account for estimates of yield, inputs, and changes in soil 
properties from each transition across single and multiple years 
in a rotation. Based on these outcomes, the design agent may se-
lect favorable (high expected value) transitions for each possible 
subsequent state based on the current crop state, resulting in 
the identification of locally adapted n-year rotations without ex-
haustively modeling each of the 721 possible 1–4-year rotations. 
Agricultural scientists could then initiate empirical study of the 
best performing rotations.

Parallels to tropical multispecies mixtures
A similar approach might be taken to study perennial multi- 
species mixtures in the tropics, such as intercropped and inte-
grated coconut-cacao-animal systems (37). However, it is unclear 

7 This interplay between a world-model based state space and a design 
agent can be represented in multiple different ways. One approach is to re-
present the state space and its transition functions being controlled by a simu-
lator that executes the world model and transitions from one state to another 
according to expected biophysical reality. The agent would also be capable of 
acting upon the state space to search for desirable transition pathways through 
the state space given the world model’s behavior. Alternatively, this could be 
seen as simply the interplay of two agents, the world model and the design 
agent, acting upon a single state space. The framework admits many possible 
agents operating within a single state space, enabling both modularity and 
generality.

8 Resource allocation (29) within genomic selection provides an explicit ex-
ample of changing the transition function in the state space model, where the 
goal is to optimize state transitions to minimize breeding program cost.
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which plant and animal combinations would achieve the desired 
goals of stakeholders. Using world models, the design agent would 
evaluate the summarized outcomes at the end of establishment, 
such as biannually for coconut and breadfruit (which can be 
planted in orchards together), and every few months for chickens; 
management of both trees and animals might be selected for 
highly favorable outcomes based on possibilities at the current 
state. Multiple long-term simulations would allow selection of fa-
vorable starting tree configurations, species, or varieties based on 
management goals and decision horizons.

In both cases, integrating technology into cropping systems 
agronomy is necessary to aid the data collection efforts necessary 
to train models. The logistics of such intensive data collection and 
integration into models are highly non-trivial with standard pro-
cedures still emerging within digital agriculture, including the 
use of synthetic data (38, 39). These practical considerations could 
slow the ultimate adoption of the state space approach.

In-Season management
Description of the design problem
Many decisions alter the growth and development of crops during 
the season, including planting date, tillage, nutrient inputs, pesti-
cide use, grazing, and harvest date. The combinations of species 
and management within a season lead to an exceedingly large 
state space.

State space description of the problem
For example, consider an intercropping agrovoltaic system where 
there is a cover crop under the solar panels and vegetable produc-
tion in the rows between panels. To set up a viable production 
farm, there may be a need to test 3 cover crops, 2 animal species 
(e.g. for grazing cover crops), 10 vegetables with 5 cultivars of 
each vegetable and 2 planting dates, 4 harvest times and 3 differ-
ent pest management scenarios, for a total of 7,200 possible states 
in a single location (40). This amount of empirical testing is not 
feasible to identify the optimum for even a single location.

Novel insights into the problem area from state spaces
There are only a few scaled agrivoltaic production systems, but 
there are comparable agroforestry systems. From the perspective 
of the design agent there may be little difference in the photosyn-
thetic activity from a tree or solar panel canopy, so new systems 
can be assessed and outcomes inferred without having actually 
been empirically tested. This demonstrates how abstractions 
that allow for modular thinking can limit the number of combina-
tions that need to be tested in a given context or to reimagine what 
combinations can be used. By identifying the management that 
enables favorable transitions among states (Fig. 1), design agent- 
selected choices can guide real world testing of solutions that 
are likely practical and will meet the needs of the researcher.

Conclusion
Agriculture has served as the foundation of human civilization 
across cultures, resulting in a rich array of system designs, 
many of which are not in use today. The state space framework 
outlined here enables the automated design of agricultural sys-
tems to explore that full breadth and beyond. Design agents 
search agricultural state spaces in order to identify systems that 
can meet the changing demands of an uncertain future. The prac-
tical implementation of an automated design system requires 

modularity in both the conceptualization of agricultural systems 
(e.g. individual-based models based on biophysical principles) and 
the software components used to define states. The practical next 
steps of implementing such a system will require rapid proposal 
and disposal of many submodules to work toward automated de-
sign. Thus, we likely need to move the field toward deliberate con-
sideration of abstractions that compose cleanly and enable 
modularity, where we can iterate on the individual contributions 
within subfields without siloing that knowledge. In this way, agri-
cultural scientists may need to think more like computer scien-
tists, holding abstractions and representations more loosely. 

[A]bstraction is a quintessential activity of computer science—the intellec-

tual tool that allows computer scientists to express their understanding of 

a problem, manage complexity, and select the level of detail and degree of 

generality they need at the moment. Computer scientists create and dis-

card abstractions as freely as engineers and architects create and discard 

design sketches (41).

The result may be that instead of relying on the intuition of indi-
vidual scientists and long-held implicit abstractions to generate 
new designs, the design of agricultural systems may be made 
more resilient in the face of uncertainty through:

1. formalizing the intuition of experts for what constitutes a re-
silient agricultural system to establish goals for automated 
design agents,

2. facilitating the borrowing and integration of modularized 
knowledge across disciplines by providing a common lan-
guage of state spaces, aiding multidisciplinary research, and

3. accelerating innovation by generating computer-aided design 
systems that can infer novel agricultural configurations with 
a high likelihood of societal benefit, allowing us to make the 
most of scarce time, space, and money in empirically evaluat-
ing new agricultural system designs.

In this way, the State Spaces for Agriculture framework is about 
the formalization of a computational imagination that provides a 
flexible and general approach to conceptualizing digital agricul-
ture research to motivate and support empirical research and de-
velopment on the most promising of designs in an uncertain 
world.
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