
This paper is included in the Proceedings of the
17th USENIX Symposium on Networked Systems Design

and Implementation (NSDI ’20)
February 25–27, 2020 • Santa Clara, CA, USA

978-1-939133-13-7

Open access to the Proceedings of the
17th USENIX Symposium on Networked

Systems Design and Implementation
(NSDI ’20) is sponsored by

Batchy: Batch-scheduling Data Flow Graphs
with Service-level Objectives

Tamás Lévai, Budapest University of Technology and Economics
& University of Southern California; Felicián Németh, Budapest University of

Technology and Economics; Barath Raghavan, University of Southern California;
Gábor Rétvári, MTA-BME Information Systems Research Group

& Ericsson Research, Hungary
https://www.usenix.org/conference/nsdi20/presentation/levai

Batchy: Batch-scheduling Data Flow Graphs with Service-level Objectives

Tamás Lévai1,2, Felicián Németh1, Barath Raghavan2, and Gábor Rétvári3,4

1Budapest University of Technology and Economics
2University of Southern California

3MTA-BME Information Systems Research Group
4Ericsson Research, Hungary

Abstract
Data flow graphs are a popular program representation in
machine learning, big data analytics, signal processing, and,
increasingly, networking, where graph nodes correspond to
processing primitives and graph edges describe control flow.
To improve CPU cache locality and exploit data-level paral-
lelism, nodes usually process data in batches. Unfortunately,
as batches are split across dozens or hundreds of parallel pro-
cessing pathways through the graph they tend to fragment
into many small chunks, leading to a loss of batch efficiency.

We present Batchy, a scheduler for run-to-completion
packet processing engines, which uses controlled queuing
to efficiently reconstruct fragmented batches in accordance
with strict service-level objectives (SLOs). Batchy comprises
a runtime profiler to quantify batch-processing gain on dif-
ferent processing functions, an analytical model to fine-tune
queue backlogs, a new queuing abstraction to realize this
model in run-to-completion execution, and a one-step reced-
ing horizon controller that adjusts backlogs across the pipeline.
We present extensive experiments on five networking use
cases taken from an official 5G benchmark suite to show that
Batchy provides 2–3× the performance of prior work while
accurately satisfying delay SLOs.

1 Introduction

One near-universal technique to improve the performance
of software packet processing engines is batching: collect
multiple packets into a single burst and perform the same
operation on all the packets in one shot. Processing packets in
batches is much more efficient than processing a single packet
at a time, thanks to amortizing one-time operational overhead,
optimizing CPU cache usage, and enabling loop unrolling
and SIMD optimizations [7, 8, 11, 22, 26]. Batch-processing
alone often yields a 2–5× performance boost. Fig. 1 presents
a series of micro-benchmarks we performed in BESS [14]
and FastClick [3], two popular software switches, showing
that executing an ACL or a NAT function is up to 4 times

1 4 8 12 16 20 24 28 32

5

10

15

20

Batch Size [packets]

Pa
ck

et
R

at
e

[m
pp

s]

LPM (B) StaticNAT (B) RandomSplit (B) DPDKACL (B)

ExactMatch (B) RoundRobinSwitch (FC) RandomSwitch (FC) Bypass (FC)

Figure 1: Maximum packet rate (in millions of pack-
ets per second, mpps) over different packet processing
micro-benchmarks in BESS [14] (marked with B) and in
FastClick [3] (FC) when varying the input batch size.

as efficient on batches containing 32 packets compared to
single-packet batches. Prior studies provided similar batch-
processing profiles in VPP [2, 22], [27, Fig. 3]. Accordingly,
batching is used in essentially all software switches (VPP [2,
27], BESS [14], FastClick [3], NetBricks [36], PacketShader
[15], and ESwitch [30]), high-performance OS network stacks
and dataplanes [3,6,8,11], user-space I/O libraries [1,16], and
Network Function Virtualization platforms [19,21,42,45,50].

Unfortunately, even if the packet processing engine receives
packets in bursts [1, 2, 6, 27, 29, 41, 50], batches tend to break
up as they progress through the pipeline [20]. Such batch-
fragmentation may happen in a multi-protocol network stack,
where packet batches are broken into smaller per-protocol
batches to be processed by the appropriate protocol mod-
ules (e.g., pure Ethernet, IPv4, IPv6, unicast/multicast, MPLS,
etc.) [8, 11]; by a load-balancer that splits a large batch into
smaller batches to be sent to different backends/CPUs for pro-
cessing [19]; in an OpenFlow/P4 match-action pipeline where
different flow table entries may appoint different next-stage
flow tables for different packets in a batch [30, 38], or in es-
sentially any packet processing engine along the branches of
the data flow graph (splitters) [3,14,16,31,47]. In fact, any op-
eration that involves matching input packets against a lookup

USENIX Association 17th USENIX Symposium on Networked Systems Design and Implementation 633

Splitter
NF1

NF2

flow1

flow2

Figure 2: A sample packet processing data flow graph: a two-
way splitter with two network functions (NFs). Both NFs
incur one unit of execution cost per each processed batch
and another one unit per each packet in the batch; the splitter
incurs negligible cost. There are two service chains (or flows),
one taking the upper and one taking the lower path.

table and distributing them to multiple next-stage processing
modules may cause packet batches to fragment [20]. Worse
still, fragmentation at subsequent match-tables combine mul-
tiplicatively; e.g., VRF-splitting on 16 VLANs followed by
an IP lookup on 16 next-hops may easily break up a single
batch of 256 packets into 256 distinct batches containing one
packet each. Processing packets in the resultant small chunks
takes a huge toll on the compute efficiency of the pipeline,
which was designed and optimized for batch-processing in
the first place [2, 11, 27]. We stress that batch-fragmentation
is quite dynamic, depending on the input traffic profile, the
offered load, the packet processing graph, the NFs, and flow
table configuration; therefore, modeling and quantifying the
resultant performance loss is challenging [22].

Trivially, fragmented batches can be “de-fragmented” us-
ing queuing, which delays the execution of an operation until
enough packets line up at the input [1, 6, 15, 50]. This way,
processing occurs over larger batches, leading to potentially
significant batch-processing gains. However, queuing packets,
thereby artificially slowing down a pipeline in order to speed it
up, is tricky [8, 11]; a suboptimal queuing decision can easily
cause delay to skyrocket. Fig. 2 shows a motivating example:
if two batches containing 2 packets each enter the pipeline
then unbuffered execution incurs 8 units of execution cost, as
the splitter breaks up each batch into two batches containing
one packet each. Placing a queue at the NF inputs, however,
enables recovery of the full batches, bringing the execution
cost down to 6 units (1 unit per the single batch processed and
2 units per the 2 packets in the batch) but increasing delay
to 2 full turnaround times. For a k-way splitter the cost of an
unbuffered execution over k batches including k packets each
would be 2k2, which buffering would reduce to k+ k2; about
2× batch-processing gain at the cost of k× queuing delay.

Of course, packet processing cannot be delayed for an ar-
bitrarily long time to recover batches in full, since this may
violate the service level objectives (SLOs) posed by differ-
ent applications. A typical tactile internet and robot control
use case requires 1–10 msec one-way, end-to-end, 99th per-
centile latency [28]; the 5G radio access/mobile core requires
5–10 msec; and reliable speech/video transport requires de-

lay below 100-200 msec. At the extreme, certain industry
automation, 5G inter-base-station and antenna synchroniza-
tion, algorithmic stock trading, and distributed memory cache
applications limit the one-way latency to 10-100 µsec [12,25].

The key observation in this paper is that optimal batch-
scheduling in a packet processing pipeline is a fine balanc-
ing act to control queue backlogs, so that processing occurs
in as large batches as possible while each flow traversing
the pipeline is scheduled just fast enough to comply with
the SLOs. We present Batchy, a run-to-completion batch-
scheduler framework for controlling execution in a packet-
processing pipeline based on strict service-level objectives.
Our contributions in Batchy are as follows:
Quantifying batch-processing gain. We observe that batch-
processing efficiency varies widely across different packet-
processing functions. We introduce the Batchy profiler, a
framework for quantifying the batched service time profile
for different packet-processing functions.
Analytical model. We introduce an expressive mathematical
model for SLO-based batch-scheduling, so that we can reason
about the performance and delay analytically and fine tune
batch de-fragmentation subject to delay-SLOs. We also fix
the set of basic assumptions under which the optimal schedule
is well-defined (see earlier discussion in [6, 15, 50]).
Batch-processing in run-to-completion mode. Taking in-
spiration from Nagle’s algorithm [32], we introduce a new
queuing abstraction, the fractional buffer, which allows us
to control queue backlogs at a fine granularity even in run-
to-completion scheduling, which otherwise offers very little
control over when particular network functions are executed.
Design, implementation, and evaluation of Batchy. We
present a practical implementation of our batch-scheduling
framework and, taking use cases from an official 5G NFV
benchmark suite (L2/L3 gateway with and without ACL, NAT,
VRF, a mobile gateway, and a robot-control pipeline), we
demonstrate that Batchy efficiently exploits batch-processing
gain consistently across a wide operational regime with small
controller overhead, bringing 1.5–3× performance improve-
ment compared to outliers and earlier work [21], while satis-
fying SLOs. Batchy is available for download at [4].

The rest of the paper is structured as follows. In Section 2
we introduce the Batchy profiler, Section 3 presents the ide-
alized mathematical model and introduces fractional buffers,
Section 4 discusses our implementation in detail, and Sec-
tion 5 describes our experiments on real-life use cases. Finally,
Section 6 discusses related work and Section 7 concludes the
paper. A detailed exposition of the algorithms used in our
implementation is given in the Appendix.

2 Profiling Batch-processing Gain

There are many factors contributing to the efficiency of batch-
processing; next, we highlight some of the most important

634 17th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

1 8 16 24 32
0

250

500

750

1k

β = 0.28642

(a) LPM

68.51+27.5 ·b

1 8 16 24 32
0

250

500

750

1k

β = 0.19919

(b) DPDK ACL

122.27+30.41 ·b

1 8 16 24 32
0

250

500

750

1k

β = 0.3254

(c) NAT

43.52+20.99 ·b

1 8 16 24 32
0

250

500

750

1k

β = 0.20691

(d) ExactMatch

94.03+24.53 ·b

Figure 3: Service-time profile: execution time [nsec] for differ-
ent modules as the function of the input batch size, averaged
over 10 runs at 100,000 batches per second. The inset gives
the batchiness βv and the linear regression Tv,0 +Tv,1bv. Ob-
serve the effects of quad-loop/SIMD optimization for the ACL
module at batch size 4, 8, and 16.

ones [26,47]. First, executing a network function on a batch in-
curs non-negligible computational costs independent from the
number of packets in it, in terms of CPU-interrupt, scheduling,
function call, I/O, memory management, and locking over-
head, and batching amortizes this fixed-cost component over
multiple packets [8, 26]. Second, executing an operation on
multiple packets in one turn improves CPU cache usage: pack-
ets can be prefetched from main memory ahead of time and
data/code locality improves as CPU caches are populated by
the first packet and then further processing happens without
cache misses. For example, VPP modules are written so that
the entire code fits into the instruction cache, reducing icache
misses [2, 27]. Third, loop unrolling, a compiler optimiza-
tion to rewrite loops into dual- or quad-loops [26] to improve
branch predictor performance and keep the CPU pipeline full,
is effective only if there are multiple packets to process in
one shot. Batch-processing also opens the door to exploit
data-level parallelism, whereby the CPU performs the same
operation on a batch of 4–32 packets in parallel for the cost
of a single SIMD instruction (SSE/AVX) [16].

Intuitively, different packet-processing functions may ben-
efit differently from batch-processing; e.g., a module process-
ing packets in a tight loop may benefit less than a heavily
SIMD-optimized one. This will then affect batch-scheduling:
reconstructing batches at the input of a lightweight module
might not be worth the additional queuing delay, as there is
very little efficiency gain to be obtained this way.

Fig. 3 provides a service time profile as the execution time
for some select BESS modules [14] as the function of the
batch size [22]. We observe two distinct execution time com-
ponents. The per-batch cost component, denoted by Tv,0 [sec]

for a module v, characterizes the constant cost that is incurred
just for calling the module on a batch, independently from
the number of packets in it. The per-packet cost component
Tv,1, [sec/pkt], on the other hand, models the execution cost of
each individual packet in the batch. A linear model seems a
good fit for the service time profiles: accordingly we shall
use the linear regression Tv = Tv,0 +Tv,1bv [sec] to describe
the execution cost of a module v where bv is the batch-size,
i.e., the average number of packets in the batches received by
module v. The coefficient of determination R2 is above 96%
in our tests, indicating a good fit for the linear model.

The per-batch and per-packet components determine the
potential batch-processing gain on different packet processing
modules. We quantify this gain with the batchiness measure
βv, the ratio of the effort needed to process B packets in a
single batch of size B through v compared to the case when
processing occurs in B distinct single-packet batches:

βv =
Tv,0 +B∗Tv,1

B(Tv,0 +Tv,1)
∼

Tv,1

Tv,0 +Tv,1
for large B . (1)

Batchiness varies between 0 and 1; small βv indicates sub-
stantial processing gain on v and hence identifies a potential
control target. The relatively small batchiness measures in
Fig. 3 suggest that most real-world packet-processing func-
tions are particularly sensitive to batch size.

Batchy contains a built-in profiler that runs a standard
benchmark on the system under test at the time of initial-
ization, collects per-batch and per-packet service-time com-
ponents for common NFs, and stores the results for later use.

3 Batch-scheduling in Data Flow Graphs

Next, we present a model to describe batch-based packet pro-
cessing systems. The model rests on a set of simplifying
assumptions, which prove crucial to reason about such sys-
tems using formal arguments. We adopt the terminology and
definitions from BESS, but we note that the model is gen-
eral enough to apply to most popular data flow graph packet-
processing engines, like VPP [47], Click/FastClick [3, 31],
NetBricks [36], or plain DPDK [16]; match-action pipelines
like Open vSwitch [38] or ESwitch [30]; or to data flow pro-
cessing frameworks beyond the networking context like Ten-
sorFlow [10] or GStreamer [43].

3.1 System model
Data flow graph. We model the pipeline as a directed graph
G = (V,E), with modules v ∈V and directed links (u,v) ∈ E
representing the connections between modules. A module v
is a combination of a (FIFO) ingress queue and a network
function at the egress connected back-to-back (see Fig. 4).
Input gates (or ingates) are represented as in-arcs (u,v) ∈ E :
u ∈ V and output gates (or outgates) as out-arcs (v,u) ∈ E :

USENIX Association 17th USENIX Symposium on Networked Systems Design and Implementation 635

Queue
Network
function

xv, bv

rv

tv = 1/xv +Tv,0 +Tv,1bv
lv = xv(Tv,0 +Tv,1bv)

bin
v

Figure 4: A Batchy module.

u ∈V . A batch sent to an outgate (v,u) of v will appear at the
corresponding ingate of u at the next execution of u. Modules
never drop packets; we assume that whenever an ACL module
or a rate-limiter would drop a packet it will rather send it to a
dedicated “drop” gate, so that we can account for lost packets.
A normal queue is a module with an empty network function.
Batch processing. Packets are injected into the ingress, trans-
mitted from the egress, and processed from outgates to ingates
along data flow graph arcs, in batches [2, 14, 16, 27, 30]. We
denote the maximum batch size by B, a system-wide param-
eter. For the Linux kernel and DPDK B = 32 or B = 64 are
usual settings, VPP sets the batch size to 256 packets by de-
fault [27], while GPU/NIC offload often works with B = 1024
or even larger to maximize I/O efficiency [40, 50].
Splitters/mergers. Any module may have multiple ingates
(merger) and/or multiple outgates (splitter), or may have no in-
gate or outgate at all. An IP Lookup module would distribute
packets to several downstream branches, each performing
group processing for a different next-hop (splitter); a NAT
module may multiplex traffic from multiple ingates (merger);
and an IP Checksum module would apply to a single datapath
flow (single-ingate–single-outgate). Certain modules are rep-
resented without ingates, such as a NIC receive queue; we call
these ingress modules S. Similarly, a module with no outgates
(e.g., a transmit queue) is an egress module.
Compute resources. A worker is an abstraction for a CPU
core, where each worker w ∈W is modeled as a connected
subgraph Gw =(Vw,Ew) of G with strictly one ingress module
Sw = {sw} executing on the same CPU. We assume that when
a data flow graph has multiple ingress modules then each
ingress is assigned to a separate worker, with packets passing
between workers over double-ended queues. A typical setup
is to dedicate a worker to each receive queue of each NIC and
then duplicate the entire data flow graph for each worker. Each
worker may run a separate explicit scheduler to distribute CPU
time across the modules in the worker graph, or it may rely
on run-to-completion; see Appendix A for an overview.
Flows. A flow f = (p f ,R f ,D f), f ∈ F is our abstraction for
a service chain, where p f is a path through G from the flow’s
ingress module to the egress module, R f denotes the offered
packet rate at the worker ingress, and D f is the delay-SLO,
the maximum permitted latency for any packet of f to reach
the egress. What constitutes a flow, however, will be use-case
specific: in an L3 router a flow is comprised of all traffic des-
tined to a single next-hop or port; in a mobile gateway a flow

is a complex combination of a user selector and a bearer selec-
tor; in a programmable software switch flows are completely
configuration-dependent and dynamic. Correspondingly, flow-
dissection in a low-level packet processing engine cannot rely
on the RSS/RPS function supplied by the NIC, which is con-
fined to VLANs and the IP 5-tuple [6, 19]. Rather, in our
framework flow dispatching occurs intrinsically as part of the
data flow graph; accordingly, we presume that match-tables
(splitters) are set up correctly to ensure that the packets of
each flow f will traverse the data flow graph along the path
p f associated with f .

3.2 System variables

We argue that at multiple gigabits per second it is overkill
to model the pipeline at the granularity of individual pack-
ets [22]. Instead, in our model variables are continuous and
differentiable, describing system statistics over a longer pe-
riod of time that we call the control period. This is analogous
to the use of standard (continuous) network flow theory to
model packet routing and rate control problems. We use the
following variables to describe the state of the data flow graph
in a given control period (dimensions indicated in brackets).
Batch rate xv [1/s]: the number of batches per second entering
the network function in module v (see again Fig. 4).
Batch size bv [pkt]: the average number of packets per batch
at the input of the network function in module v, where bv ∈
[1,B] and, recall, B is the maximum allowed batch size.
Packet rate rv [pkt/s]: the number of packets per second
traversing module v: rv = xvbv.
Maximum delay tv [sec]: delay contribution of module v to
the total delay of packets traversing it. We model tv as

tv = tv,queue + tv,svc = 1/xv +(Tv,0 +Tv,1bv) , (2)

where tv,queue = 1/xv is the queuing delay by Little’s law and
tv,svc = Tv,0 +Tv,1bv is the service time profile (see Section 2).
System load lv (dimensionless): the network function in mod-
ule v with service time tv,svc executed xv times per second in-
curs lv = xvtv,svc = xv(Tv,0 +Tv,1bv) system load in the worker.
Turnaround-time T0 [sec]: the maximum CPU time the sys-
tem may spend pushing a single batch through the pipeline.
The turnaround time typically varies with the type and number
of packets in each batch, the queue backlogs, etc.; correspond-
ingly, we usually consider the time to execute all modules on
maximum sized batches as an upper bound:

T0 ≤ ∑
v∈V

(Tv,0 +Tv,1B) . (3)

3.3 Assumptions

Our aim is to define the simplest possible batch-processing
model that still allows us to reason about flows’ packet rate

636 17th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

and maximum delay, and modules’ batch-efficiency. The be-
low assumptions will help to keep the model at the minimum;
these assumptions will be relaxed later in Section 4.
Feasibility. We assume that the pipeline runs on a single
worker and this worker has enough capacity to meet the delay-
SLOs. In the next section, we show a heuristic method to
decompose a data flow graph to multiple workers in order to
address SLO violations stemming from inadequate resources.
Buffered modules. We assume that all modules contain an
ingress queue and all queues in the pipeline can hold up to at
most B packets at any point in time. In the next section, we
show how to eliminate useless queues in order to remove the
corresponding latency and processing overhead.
Static flow rate. All flows are considered constant-bit-rate
(CBR) during the control period (usually in the millisecond
time frame). This assumption will be critical for the poly-
nomial tractability of the model. Later on, we relax this as-
sumption by incorporating the model into a receding-horizon
optimal control framework.

3.4 Optimal explicit batch-schedule
Workers typically run an explicit scheduler to distribute CPU
time across the modules in the worker graph. Common exam-
ples include Weighted Fair Queueing (WFQ) and Completely
Fair Scheduling (CFS); here, the user assigns integer weights
to modules and the scheduler ensures that runtime resource
allocation will be proportional to modules’ weight [46]. For
simplicity, we consider an idealized WFQ/CFS scheduler in-
stead, where execution order is defined in terms per-module
rates and not weights; rates will be converted to weights later.

The idealized scheduler runs each module precisely at the
requested rate. When scheduled, the modules’ network func-
tion dequeues at most a single batch worth of packets from the
ingress queue, executes the requested operation on all packets
of the batch, forms new sub-batches from processed packets
and places these to the appropriate outgates.

In this setting, we seek for a set of rates xv at which each
module v ∈ V needs to be executed in order to satisfy the
SLOs. If multiple such rate allocations exist, then we aim to
choose the one that minimizes the overall system load.

Recall, executing v exactly xv times per second presents
lv = xvtv,svc = xv(Tv,0 +Tv,1bv) load to the system. The objec-
tive function, correspondingly, is to find rates xv that minimize
the total system load ∑v∈V lv, taken across all modules:

min ∑
v∈V

xv(Tv,0 +Tv,1bv) . (4)

Once scheduled, module v will process at most bv ∈ [1,B]
packets through the network function, contributing tv,svc =
Tv,0 +Tv,1bv delay to the total latency of each flow traversing
it. In order to comply with the delay-SLOs, for each flow f it
must hold that the total time spent by any packet in the worker
ingress queue, plus the time needed to send a packet through

the flow’s path p f , must not exceed the delay requirement D f
for f . Using that the ingress queue of size B may develop
a backlog for only at most one turnaround time T0 (recall,
we assume there is a single worker and each queue holds
at most B packets), and also using (2), we get the following
delay-SLO constraint:

t f = T0 + ∑
v∈p f

(1/xv +Tv,0 +Tv,1bv)≤ D f ∀ f ∈ F . (5)

Each module v∈V must be scheduled frequently enough so
that it can handle the total offered packet rate Rv =∑ f :v∈p f

R f ,
i,e., the sum of the requested rate R f of each flow f traversing
v (recall, we assume flow rates R f are constant). This results
the following rate constraint:

rv = xvbv = ∑
f :v∈p f

R f = Rv ∀v ∈V . (6)

Finally, the backlog bv at any of the ingress queues across
the pipeline can never exceed the queue size B and, of course,
all system variables must be non-negative:

1≤ bv ≤ B, xv ≥ 0 ∀v ∈V . (7)

Together, (4)–(7) defines an optimization problem which
provides the required static scheduling rate xv and batch
size bv for each module v in order to satisfy the SLOs
while maximizing the batch-processing gain. This of course
needs the turnaround time T0; one may use the approxima-
tion (3) to get a conservative estimate. Then, substituting
bv = ∑ f :v∈p f R f/xv = Rv/xv using (6), we get the following sys-
tem, now with only the batch-scheduling rates xv as variables:

min ∑
v∈V

xv(Tv,0 +Tv,1
Rv

xv
) (8)

t f = T0 + ∑
v∈p f

(
1
xv

+Tv,0 +Tv,1
Rv

xv

)
≤ D f ∀ f ∈ F (9)

Rv/B≤ xv ≤ Rv ∀v ∈V (10)

Since the constraints and the objective function are convex,
we conclude that (8)–(10) is polynomially tractable and the
optimal explicit batch-schedule is unique [5]. Then, setting
the scheduling weights proportionally to rates xv results in the
optimal batch-schedule on a WFQ/CFS scheduler [46].

3.5 Run-to-completion execution
WFQ/CFS schedulers offer a plausible way to control batch
de-fragmentation via the per-module weights. At the same
time, often additional tweaking is required to avoid head-of-
line blocking and late drops along flow paths [21], and even
running the scheduler itself may incur non-trivial runtime
overhead. Run-to-completion execution, on the other hand,
eliminates the explicit scheduler all together, by tracing the

USENIX Association 17th USENIX Symposium on Networked Systems Design and Implementation 637

entire input batch though the data flow graph in one shot
without the risk of head-of-line blocking and internal packet
drops [6,14]. Our second batch-scheduler will therefore adopt
run-to-completion execution.

The idea in run-to-completion scheduling is elegantly sim-
ple. The worker checks the input queue in a tight loop and,
whenever the queue is not empty, it reads a single batch and in-
jects it into pipeline at the ingress module. On execution, each
module will process a single batch, place the resulting packets
at the outgates potentially breaking the input batch into mul-
tiple smaller output batches, and then recursively schedule
the downstream modules in order to consume the sub-batches
from the outgates. This way, the input batch proceeds through
the entire pipeline in a single shot until the last packet of the
batch completes execution, at which point the worker returns
to draining the ingress queue. Since upstream modules will
automatically schedule a downstream module whenever there
is a packet waiting to be processed, run-to-completion execu-
tion does not permit us to control when individual modules
are to be executed. This makes it difficult to enforce SLOs,
especially rate-type SLOs, and to delay module execution to
de-fragment batches.

Below, we introduce a new queuing abstraction, the frac-
tional buffer, which nevertheless lets us exert fine-grained
control over modules’ input batch size. The fractional buffer
is similar to Nagle’s algorithm [32], originally conceived to
improve the efficiency of TCP/IP networks by squashing mul-
tiple small messages into a single packet. The backlog is
controlled so as to keep end-to-end delay reasonable. Indeed,
Nagle’s algorithm exploits the same batch-efficiency gain
over the network as we intend to exploit in the context of
compute-batching, motivating our choice to apply it when-
ever there is sufficient latency slack available.

A fractional buffer maintains an internal FIFO queue and
exposes a single parameter to the control plane called the
trigger b, which enables tight control of the queue backlog
and thereby the delay. The buffer will enqueue packets and
suppress execution of downstream modules until the backlog
reaches b, at which point a packet batch of size b is consumed
from the queue, processed in a single burst through the suc-
ceeding module, and execution of downstream modules is
resumed. Detailed pseudocode is given in Appendix C.

We intentionally define the trigger in the batch-size do-
main and not as a perhaps more intuitive timeout [32], since
timeouts would re-introduce an explicit scheduler into the oth-
erwise “schedulerless” design. Similarly, we could in theory
let the buffer to emit a batch larger than b whenever enough
packets are available; we intentionally restrict the output batch
to size b so as to tightly control downstream batch size.

What remains is to rewrite the optimization model (8)–(10)
from explicit module execution rates xv to fractional buffer
triggers. Interestingly, jumping from rate-based scheduling to
the run-to-completion model is as easy as substituting vari-
ables: if we replace the ingress queue with a fractional buffer

with trigger bv in each module v, then the subsequent network
function will experience a batch rate of xv = Rv/bv at batch
size bv. Substituting this into the optimization problem (4)–(7)
yields the optimal batch-schedule for the run-to-completion
model with variables bv : v ∈V :

min ∑
v∈V

Rv

bv
(Tv,0 +Tv,1bv) (11)

t f = T0 + ∑
v∈p f

(
bv

Rv
+Tv,0 +Tv,1bv

)
≤ D f ∀ f ∈ F (12)

1≤ bv ≤ B ∀v ∈V (13)

Again, the optimization problem is convex and the optimal
setting for the fractional buffer triggers is unique. In addi-
tion, the feasible region is linear, which makes the problem
tractable for even the simplest of convex solvers. Since the
substitution xv = Rv/bv can always be done, we find that for
any feasible batch-rate xv : v ∈ V in the explicit scheduling
problem (8)–(10) there is an equivalent set of fractional buffer
triggers bv : v∈V in the run-to-completion problem (11)–(13)
and vice versa; put it another way, any system state (collection
of flow rates and delays) feasible under the explicit scheduling
model is also attainable with a sufficient run-to-completion
schedule. To the best of our knowledge, this is the first time
that an equivalence between the two crucial data flow-graph
scheduling models is shown. We note however that the as-
sumptions in Section 3.3 are critical for the equivalence to
hold. For instance, explicit scheduling allows for a “lossy”
schedule whereas a run-to-completion schedule is lossless by
nature; under the “feasibility” assumption, however, there is
no packet loss and hence the equivalence holds.

4 Implementation

We now describe the design and implementation of Batchy,
our batch-scheduler for data flow graph packet-processing
engines. The implementation follows the model introduced
above, extended with a couple of heuristics to address prac-
tical limitations. We highlight only the main ideas of the
implementation below; a detailed description of the heuristics
with complete pseudocode can be found in the Appendix.
Design. To exploit the advantages of the simple architecture
and zero scheduling overhead, in this paper we concentrate
on the run-to-completion model (11)–(13) exclusively and
we leave the implementation of the explicit scheduling model
(8)–(10) for further study. This means, however, that currently
we can enforce only delay-type SLOs using Batchy. In our de-
sign, the control plane constantly monitors the data plane and
periodically intervenes to improve batch-efficiency and satisfy
SLOs. Compared to a typical scheduler, Batchy interacts with
the data plane at a coarser grain: instead of operating at the
granularity of individual batches, it controls the pipeline by
periodically adjusting the fractional buffer triggers and then

638 17th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

it relies entirely on run-to-completion scheduling to handle
the fine details of module execution.
Receding-horizon control. A naive approach to implement
the control plane would be to repeatedly solve the convex
program (11)–(13) and apply the resulting optimal fractional-
buffer triggers to the data plane. Nevertheless, by the time the
convex solver finishes computing the optimal schedule the
system may have diverged substantially from the initial state
with respect to which the solution was obtained. To tackle
this difficulty, we chose a one-step receding-horizon control
framework to implement Batchy. Here, in each control period
the optimization problem (11)–(13) is bootstrapped with the
current system state and fed into a convex solver, which is
then is stopped after the first iteration. This results a coarse-
grain control action, which is then immediately applied to the
data plane. After the control period has passed, the system is
re-initialized from the current state and a control is calculated
with respect to this new state. This way, the controller rapidly
drives the system towards improved states and eventually
reaches optimality in steady state, automatically adapting to
changes in the input parameters and robustly accounting for
inaccuracies and failed model assumptions without having to
wait for the convex solver to fully converge in each iteration.
Main control loop. Upon initialization, Batchy reads the data
flow graph, the flows with the SLOs, and per-module service
time profiles from the running system. During runtime, it mea-
sures in each control period the execution rate x̃v, the packet
rate r̃v, and the mean batch size b̃in

v at the input of the ingress
queue for each module v ∈V , plus the 95th percentile packet
delay t̃ f measured at the egress of each flow f ∈ F . (The
overbar tilde notation is to distinguish measured parameters.)
The statistics and the control period are configurable; e.g.,
Batchy can be easily re-configured to control for the 99th per-
centile or the mean delay. Due to its relative implementation
simplicity and quick initial convergence, we use the gradient
projection algorithm [5] to compute the control but in each run
we execute only a single iteration. The algorithm will adjust
triggers so as to obtain the largest relative gain in total system
load and, whenever this would lead to an SLO violation, cut
back the triggers just enough to avoid infeasibility.
Insert/short-circuit buffers. An unnecessary buffer on the
packet-processing fast path introduces considerable delay and
incurs nontrivial runtime overhead. In this context, a buffer is
“unnecessary” if it already receives large enough batches at the
input (Batchy detects such cases by testing for b̃in

v ≥ 0.7B); if
it would further fragment batches instead of reconstructing
them (bv ≤ b̃in

v); or if just introducing the buffer already vi-
olates the delay-SLO (1/xv > D f for some v ∈ p f). If one
of these conditions hold for a module v, Batchy immedi-
ately short-circuits the buffer in v by setting the trigger to
bv = 0: the next-time module v is executed the ingress queue
is flushed and subsequent input batches are immediately fed
into the network function without buffering. Similar heuris-
tics allow Batchy to inject buffers into the running system: at

initialization we short-circuit all buffers (“null-control”, see
below) and, during runtime, we install a buffer whenever all
flows traversing a module provide sufficient delay-budget.

Recovering from infeasibility. The projected gradient con-
troller cannot by itself recover from an infeasible (SLO-
violating) state, which may occur due to packet rate fluc-
tuation or an overly aggressive control action. A flow f is
in SLO-violation if t̃ f ≥ (1−δ)D f where δ is a configurable
parameter that allows to trade off SLO-compliance for batch-
efficiency. Below, we use the setting δ = 0.05, which yields a
rather aggressive control that strives to maximize batch size
with a tendency to introduce relatively frequent, but small,
delay violations. Whenever a flow f ∈ F is in SLO violation
and there is a module v in the path of f set to a non-zero
trigger (bv > b̃in

v), we attempt to reduce bv by
⌈

D f−t f
∂t f/∂bv

⌉
. If

possible, this would cause f to immediately recover from
the SLO-violation. Otherwise, it is possible that the invariant
bv ≥ b̃in

v may no longer hold; then we repeat this step at as
many modules along p f as necessary and, if the flow is still
in SLO-violation, we short-circuit all modules in p f .

Pipeline decomposition. Batchy contains a pipeline con-
troller responsible for migrating flows between workers to
enforce otherwise unenforceable delay-SLOs. Consider the
running example in Fig. 2, assume a single worker, let the pro-
cessing cost of NF1 be 1 unit and that of NF2 be 10 units, and
let the delay-SLO for the first flow be 2 units. This pipeline is
inherently in delay-SLO violation: in the worst case a packet
may need to spend 10 time units in the ingress queue until
NF2 finishes execution, significantly violating the delay-SLO
for the first flow (2 units). This inherent SLO violation will
persist as long as NF1 and NF2 share a single worker. Batchy
uses the analytical model to detect such cases: a worker w is
in inherent delay-SLO violation if there is a flow f ∈ F for
which ∑v∈Vw(Tv,0 +Tv,1B)≥D f holds, using the conservative
estimate (3). Then Batchy starts a flow migration process: first
it packs flows back to the original worker as long as the above
condition is satisfied and then the rest of the flows are moved
to a new worker. This is accomplished by decomposing the
data flow graph into multiple disjunct connected worker sub-
graphs. Note that flows are visited in the ascending order of
the delay-SLO, thus flows with restrictive delay requirements
will stay at the original worker with a high probability, exempt
from cross-core processing delays [19].

Implementation. We implemented Batchy on top of BESS
[14] in roughly 6,000 lines of Python/BESS code. (Batchy
is available at [4].) BESS is a high-performance packet pro-
cessing engine providing a programming model and interface
similar to Click [31]. BESS proved an ideal prototyping plat-
form: it has a clean architecture, is fast [24], provides an
efficient scheduler, exposes the right abstractions and offers a
flexible plugin infrastructure to implement the missing ones.
The distribution contains two built-in controllers. The on-off
controller (“Batchy/on-off”) is designed for the case when

USENIX Association 17th USENIX Symposium on Networked Systems Design and Implementation 639

fractional buffers are not available in the data plane. This
controller alters between two extremes (bang-bang control):
at each module v, depending on the delay budget it either
disables buffering completely (bv = 0) or switches to full-
batch buffering (bv = B), using the above buffer-insertion/
deletion and feasibility-recovery heuristics. On top of this, the
full-fledged Batchy controller (“Batchy/full”) adds fractional
buffers and fine-grained batch-size control using the projected
gradient method.

5 Evaluation

Batchy is a control framework for packet-processing engines,
which, depending on flows’ offered packet rate and delay-
SLOs, searches for a schedule that balances between batch-
processing efficiency and packet delay. In this context the
following questions naturally arise: (i) how much do batches
fragment in a typical use case (if at all) and how much effi-
ciency is there to gain by reconstructing these? how precisely
does Batchy enforce SLOs?; (ii) which is the optimal opera-
tional regime for Batchy and what is the cost we pay?; (iii)
does Batchy react quickly to changes in critical system pa-
rameters?; and finally (iv) can Batchy recover from inherent
SLO-violations? Below we seek to answer these questions.
Evaluation setup. To understand the performance and
latency-related impacts of batch control, we implemented two
baseline controllers alongside the basic Batchy controllers
(Batchy/on-off and Batchy/full): the null-controller performs
no batch de-fragmentation at all (bv = 0 : v ∈ V), while the
max-controller reconstructs batches in full at the input of
all modules (bv = B : v ∈ V). Both baseline controllers ig-
nore SLOs all together. The difference between performance
and delay with the null- and max-controllers will represent
the maximum attainable efficiency improvement batching
may yield, and the price we pay in terms of delay. We also
compared Batchy to NFVnice, a scheduling framework orig-
inally defined for the NFV context [21]. NFVnice is imple-
mented in a low-performance container-based framework; to
improve performance and to compare it head-to-head, we re-
implemented its core functionality within BESS. Our imple-
mentation uses WFQ to schedule modules with equal weights
and enables backpressure. All controllers run as a separate
Python process, asserting real-time control over the BESS
data plane via an asynchronous gRPC channel.

The evaluations are performed on 5 representative use cases
taken from an official industry 5G benchmark suite [24].
The L2/L3(n) pipeline implements a basic IP router, with
L2 lookup, L3 longest-prefix matching, and group processing
for n next-hops; the GW(n) use case extends this pipeline
into a full-fledged gateway with NAT and ACL processing for
n next-hop groups; and the VRF(m,n) pipeline implements
m virtual GW(n) instances preceded by an ingress VLAN
splitter (see Fig. 5). The MGW(m,n) pipeline is a full 4G
mobile gateway data plane with m users and n bearers per

Queue
L2

lookup
VLAN
table

L3
Lookup

L3
Lookup

..
.

ACL

ACL

ACL

ACL

..
.

..
.

NAT

NAT

NAT

NAT

group proc

group proc

group proc

group proc

Queue

L2L3:

GW:

VRF:

Figure 5: The VRF pipeline. The GW pipeline is identical to
the VRF pipeline with only a single VRF instance, and the
L2/L3 pipeline is a GW pipeline without a NAT and ACL on
the next-hop branches.

Queue
Dir

selector

Bearer
selector

Bearer
selector

..
.

User
selector

User
selector

User
selector

User
selector

. .
.

. .
.

Upstream processing

Upstream processing

Upstream processing

Upstream processing

Downstream processing

Downstream processing

Downstream processing

Downstream processing

. . .

. . .

. . .

. . .

L3
table

Queue

uplink

downlink

QoS:

Bulk:

Figure 6: The mobile gateway (MGW) pipeline.

user, with complete uplink and downlink service chains (see
Fig. 6). Finally, the RC(n) pipeline models a 5G robot con-
trol use case: RC(n) corresponds to the running example in
Fig. 2 with n branches, with the upper branch representing an
ultra-delay-sensitive industry automation service chain and
the rest of the branches carrying bulk traffic. We obtained test
cases of configurable complexity by varying the parameters
m and n and installing a flow over each branch of the resultant
pipelines; e.g., in the VRF(2,4) test we have a separate flow
for each VRF and each next-hop, which gives 8 flows in total.

Each pipeline comes with a traffic source that generates syn-
thetic test traffic for the evaluations. For the L2/L3 pipeline,
we repeated the tests with a real traffic trace taken from a
CAIDA data set [9], containing 1.85 million individual trans-
port sessions of size ranging from 64 bytes to 0.8 Gbytes (18
Kbyte mean) and maximum duration of 1 min (5.4 sec mean);
the results are marked with the label *L2L3. Unless otherwise
noted, the pipelines run on a single worker (single CPU core),
with the traffic generator provisioned at another worker. The
maximum batch size is 32, the control period is 100 msec,
and results are averaged over 3 consecutive runs.

Each evaluation runs on a server equipped with an Intel
Xeon E5-2620 v3 CPU (12 cores total, 6 isolated, power-
saving disabled, single socket) with 64GB memory (with 12
× 1GB allocated as hugepages), installed with the Debian/
GNU operating system, Linux kernel v4.19, a forked version
of BESS v0.4.0-57-g43bebd3, and DPDK v17.11.
Batch-scheduling constant bit-rate flows. In this test round,
we benchmark the static performance of the Batchy con-

640 17th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

1
8

16
24

32

3.7

28.9

3.9 2.6

32

B
at

ch
si

ze
[p

kt
]

4.9

22.3

2.1 2.1

32

2.2

23.7

2 2.2

32

5.9

24.1

1.7 1.7

32 25.9 27.8

4.1 5

32 30.1 30.1

3.4 2.24

32

2

4

6 4.94

6.33

3.23
3.63

6.11

R
at

e
[m

pp
s]

3.81
4.77

0.82
1.9

5.11

1.86

3.63

0.54

1.85

3.62

1.83
2.5

0.35
1.06

2.56
2.1 2.35

0.39
1.49

2.36
3.25 3.26

0.58 0.43

3.34

0

50

100

0 0.5 0 0

100

L2L3(16)

D
el

ay
[v

io
l.,

%
]

5.7 5.7 1 0

62.5

*L2L3(64)
0 5.8 0 0

100

GW(64)
0

8.2
0 0

100

VRF(12,8)
0 0.3 0 0

100

MGW(16,4)
0 0

100 100 100

RC(16)

Batchy/on-off
Batchy/full
NFVnice
Null
Max

Common parameters. test time: 200 periods, warmup: 100 periods, control period: 0.1sec, δ = 0.05, SLO-control: 95th percentile delay, burstiness: 1. Measure params (bucket/max): 5µsec/250msec. L2L3: FIB: 500 entries.
CAIDA trace: equinix-nyc.dirA.20190117-130600.UTC.anon. GW: ACL: 100 entries, NAT: static NAT. MGW: FIB: 5k entries, 4 users on bearer0, upstream/downstream processing T0,v = 2000,T1,v = 100.

Figure 7: Static evaluation results (mean, 1st and 3rd quartile) with the null-controller, max-controller, NFVnice, Batchy/on-off
and Batchy/full on different pipelines: average batch-size, cumulative packet rate, and delay-SLO statistics as the percentage of
control periods when an SLO-violation was detected for at least one flow.

trollers against the baselines and NFVnice over 6 represen-
tative 5G NFV configurations. The null-controller, the max-
controller, and NFVnice do not consider the delay-SLO, while
for Batchy/on-off and Batchy/full we set the delay-SLO to
80% of the average delay measured with the max-controller;
this setting leaves comfortable room to perform batch de-
fragmentation but sets a firm upper bound on triggers. (With-
out an SLO, Batchy controllers degrade into a max-controller.)

After a warmup (100 control periods) we ran the pipeline
for 100 control periods and we monitored the batch size
statistics averaged across modules, the cumulative packet rate
summed over all flows, and the delay-SLO statistics as the
percentage of control periods when an SLO violation occurs
for at least one flow. Fig. 7 highlights the results for 6 select
configurations and Appendix B details the full result set. Our
observations are as follows.

First, the full-fledged Batchy controller (Batchy/full) can
successfully reconstruct batches at the input of network func-
tions, achieving 70–80% of the average batch size of the max-
controller in essentially all use cases (same proportion as
the delay-SLO constraints). Batch-fragmentation gets worse
as the number of branches increases across which batches
may be split (the branching factor), to the point that when
there are 16–64 pathways across the data flow graph the
null-controller works with just 2–3 packets per batch. The
simplified controller (Batchy/on-off) produces mixed results:
whenever there is enough delay-budget to insert full buffers it
attains similar de-fragmentation as Batchy/full (MGW(16,4),
RC(16)), while in other cases it degrades into null-control
(GW(64)).

Second, batch de-fragmentation clearly transforms into
considerable efficiency improvement. Batchy/full exhibits
1.5–2.5× performance compared to the case when we do
no batch de-fragmentation at all (null-control), and Batchy/
on-off shows similar, although smaller, improvements. In the

robot-control use case we see 7.5× throughput margin. This
experiment demonstrates the benefits of selective per-module
batch-control: there is only one highly delay-sensitive flow
but this alone rules out any attempt to apply batching globally
(even at the I/O); Batchy can, however, identify this chain
and short-circuit all buffers along just this chain while it can
still buffer the remaining bulk flows, yielding a dramatic per-
formance boost. Despite the firm upper bound on the delay,
and on the maximum attainable batch size, Batchy performs
very close to the max-controller and in some tests even out-
performs it (e.g., for L2L3(16)). This is because the max-
controller buffers all modules unconditionally while Batchy
carefully removes unnecessary buffers, and this helps in terms
of valuable CPU cycles saved. The results are consistently
reproduced over both the synthetic and the real traffic traces.

Third, despite the rather aggressive controller settings (δ =
0.05, see the previous Section), Batchy controllers violate
the delay-SLO at most 9% of time for at least one out of the
possibly 64 flows, and even in these cases the relative delay
violation is always below 1–2% (not shown in the figures).
We believe that this is a price worth paying for the efficiency
gain; manually repeating a failed test with a less aggressive
control (δ= 0.2) eliminated delay-SLO violations all together,
at the cost of somewhat lower throughput.

Finally, we see that the Batchy/on-off controller is already
useful in its own right in that it produces substantial batch-
performance boost in certain configurations, but it hardly im-
proves on null-control in others. It seems that discrete on-off
control is too coarse-grained to exploit the full potential of
batch de-fragmentation; to get full advantage we need finer-
grained control over batch sizes, and the ensuing delay, using
fractional buffers and the Batchy/full controller.
Optimal operational regime and runtime overhead. Next,
we attempt to obtain a general understanding of the efficiency
improvements attainable with Batchy, and the cost we pay in

USENIX Association 17th USENIX Symposium on Networked Systems Design and Implementation 641

5.
0

4.
0 3.

0
2.

5

2.
0

1.
8

1.
6

1.6

1.
4

1.4

1.
2

1.2

DPDKACL

D
PD

K
A

C
L

E
xa

ct
M

at
ch

L
PM

N
A

T

0.1 0.2 0.3 0.4 0.5 0.6 0.7
1
4

8

12

16

20

24

28

32

Batchiness

B
ra

nc
hi

ng

4.
00

3.
00

2.
00

1.
75

1.75

1.
50

1.50

1.25

1.25
1.25

1.25
1.25

1.
25

1.25

1.25

1.25

1.25
1.25

1.25

1.25
1.25

1.25

caida

1 4 8 12 16 20
1
4

8

12

16

20

24

28

32

Burstiness
Branching: setting parameter n in the RC(n) pipeline. Batchiness: Bypass module, varying T0,v and T1,v .

Burstiness: varying mean burst size. Fixed parameters: first plot: burstiness=1; second plot: β = 1/11 for all modules.

Figure 8: Batchiness and burstiness vs. branching: Batchy/full
packet rate normalized to the maximally fragmented case.

terms of controller overhead. For this, we first define a set of
meta-parameters that abstract away the most important factors
that shape the efficiency and overhead of Batchy, and then we
conduct extensive evaluations in the configuration space of
these meta-parameters.

The meta-parameters are as follows. Easily, it is the com-
plexity of the underlying data flow graph that fundamentally
determines Batchy’s performance. We abstract pipeline com-
plexity using the branching meta-parameter, which repre-
sents the number of distinct control-flow paths through the
data flow graph; the higher the branching the more batches
may break up inside the pipeline and the larger the potential
batch de-fragmentation gain. Second, batchiness, as intro-
duced in Section 2, determines each module’s sensitivity to
batch size; small batchiness usually indicates huge potential
de-fragmentation gain. Finally, the specifics of the input traf-
fic pattern is captured using the burstiness meta-parameter,
which measures the average size of back-to-back packet bursts
(or flowlets [37]) at the ingress of the pipeline. Indeed, bursti-
ness critically limits batch-efficiency gains: as packet bursts
tend to follow the same path via the graph they are less prone
to fragmentation, suggesting that the performance margin of
de-fragmentation may disappear over highly bursty traffic.

To understand how these factors shape the efficiency of
Batchy, Fig. 8 shows two contour plots; the first one charac-
terizes the speedup with Batchy/full compared to null-control
in the branching–batchiness domain and the second one mea-
sures branching against burstiness. The plots clearly outline
the optimal operational regime for Batchy: as the number of
branches grows beyond 4–8 and batchiness remains under
0.5 we see 1.5–4× speedup, with diminishing returns as the
mean burst size grows beyond 10. These gains persist with
realistic exogenous parameters; batchiness for real modules is
between 0.2–0.3 (see Fig. 3) and the CAIDA trace burstiness
is only 1.13 (see the vertical indicators in the plots). But even
for very bursty traffic and/or poor batch sensitivity, Batchy
consistently brings over 1.2× improvement and never wors-
ens performance: for workloads that do not benefit from batch
de-fragmentation Batchy rapidly removes useless buffers and

Branching (n) Response time Stats Gradient Control
1 2.4 msec 66% 31% 3%
2 3.5 msec 61% 37% 2%
4 6.9 msec 65% 32% 3%
8 11.6 msec 65% 32% 3%

16 21.9 msec 66% 30% 4%
32 34.8 msec 68% 28% 4%
64 89.1 msec 72% 22% 6%

Table 1: Batchy/full runtime overhead on increasingly more
complex RC(n) pipelines: branching, total controller response
time, and contribution of each phase during the control, i.e.,
monitoring (Stats), gradient control (Gradient), and applying
the control (Control).

falls back to default, unbuffered forwarding.
Table 1 summarizes the controller runtime overhead in

terms of the “pipeline complexity” meta-parameter (branch-
ing). The profiling results indicate that the performance gains
come at a modest resource footprint: depending on pipeline
complexity the controller response time varies between 2–90
milliseconds, with roughly two thirds of the execution time
consumed by marshaling the statistics out from the data-plane
and applying the new triggers back via gRPC, and only about
one third taken by running the gradient controller itself.
System dynamics under changing delay-SLOs. We found
the projected gradient controller to be very fast in the static
tests: whenever the system is in steady state (offered load
and delay-SLOs constant), Batchy usually reaches an optimal
KKT point [5] in about 5–10 control periods. In the tests
below, we evaluated Batchy under widely fluctuating system
load to get a better understanding of the control dynamics.

First, we study how Batchy reacts to changing delay-SLOs
(see the conf/l2l3_vd.batchy config file in the Batchy
source distribution [4]). The results are in Fig. 9a. In this
experiment, we set up the VRF(4, 8) pipeline and vary the
delay-SLO between 60 µsec and 300 µsec in 6 steps; see the
blue dotted “square wave” in Fig. 9a/Delay panel. The SLOs
were set so that we test abrupt upwards (“rising edge”) and
downwards (“falling edge”) delay-SLO changes as well. The
figure shows for each control period the value of the trigger at
the ACL module of the top branch (first VRF, first next-hop),
the total delay and the delay-SLO for the flow provisioned
at the top branch, and the normalized cumulative packet rate
with the null-controller, the max-controller, and Batchy/full.

The results suggest that Batchy promptly reacts to “bad
news” (SLO-reduction, falling edge, Fig. 9a/Delay) and in-
stantaneously reduces fractional buffer triggers (Fig. 9a/
Control), or even completely short-circuits buffers to recover
from SLO-violations, whereas it is much more careful to react
to “good news” (increasing SLO, rising edge). Overall, the
packet delay closely tracks the SLO dynamics. Meanwhile,
whenever there is room to perform batch de-fragmentation
Batchy rapidly reaches the efficiency of the max-controller,
delivering 2–3× the total throughput of the null-controller.
System dynamics with variable bitrate traffic. Next, we

642 17th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Batchy/full Null Max Delay-SLO Offered Load Performance Improvement Delay-SLO Violation

0
8

16
24
32

C
on

tr
ol

50
100

200

300

D
el

ay
[µ

se
c]

0 20 40 60 80 100 120
1

2

3

Time [control period]

N
or

m
al

iz
ed

R
at

e

(a)

0
8

16
24
32

C
on

tr
ol

101

103

104

D
el

ay
[µ

se
c]

0 20 40 60 80 100 120

104

105

106

Time [control period]

R
at

e
[p

ps
]

(b)

0
8

16
24
32

C
on

tr
ol

102

103

104

D
el

ay
(B

0)
[µ

se
c]

0 20 40 60 80 100 120
1

2

3

Time [control period]

N
or

m
al

iz
ed

R
at

e

0 40 80 120
102
103
104
105

(c)

Figure 9: System dynamics with changing SLOs and variable bit-rate traffic: (a) control and delay for the first flow, and cumulative
packet rate in the VRF(4,8) pipeline when the delay-SLO changes in the range 60–300 µsec; (b) control and delay for the first
flow, and cumulative packet rate in the VRF(4,8) pipeline with the delay-SLO of all flows fixed at 1 msec and varying the total
offered load between 50 kpps to 3 mpps; and (c) control, delay, and packet rate for the first user’s bearer-0 (B0) flow in the
MGW(2,16) pipeline, delay-SLO fixed at 1 msec, bearer-0 rate varying between 1 kpps and 50 kpps for all users.

test Batchy with variable bitrate flows. Intuitively, when the
offered load drops abruptly it suddenly takes much longer for
a buffer to accumulate enough packets to construct a batch,
which causes delay to skyrocket and thereby leads to a grave
delay-SLO violation. In such cases Batchy needs to react fast
to recover. On the other hand, when the packet rate increases
and queuing delays fall, Batchy should gradually increase
triggers across the pipeline to improve batch-efficiency.

To understand the system dynamics under changing packet
rates, we conducted two experiments. First, we fire up the
VRF(4,8) pipeline and we fix the delay-SLO for all flows at
1 msec and vary the total offered load between 50 kpps to 3
mpps in 6 steps; this amounts to a dynamic range of 3 orders
of magnitude (see conf/l2l3_vbr.batchy in [4]). Second,
we set up the MGW(2,16) pipeline (2 bearers and 16 users,
see conf/mgw_vbr.batchy in [4]), but now only bearer-0
flows (B0, the “QoS” bearer) vary the offered packet rate
(between 1 kpps and 50 kpps) and set a delay-SLO (again, 1
msec). The results are in Fig. 9b and Fig. 9c, respectively.

Our observations here are similar as before. Even in the face
of widely changing packet rates, Batchy keeps delay firmly
below 1 msec except under transients: it instantaneously re-
covers from SLO violations and rapidly returns to operate
at full batch-size whenever possible. Meanwhile, the max-
controller causes a 100× SLO violation at small packet rates.
In the second experiment we again see significant improve-
ment in the total throughput with Batchy, compared to the

0 15 20 25
0

1000

3000

5000

delay-SLO violation

Time [control period]

D
el

ay
[µ

se
c] user1-uplink

delay-SLO

Figure 10: Recovery from inherent delay-SLO violations:
MGW(2,8) test case with two users at bearer-0, delay-SLO
set to 1 msec. The pipeline controller is started manually at
the 20-th control period, moving bulk bearer-1 uplink and
downlink traffic to a new worker each. (Downlink traffic and
the other user’s traffic exhibit similar performance.)

null-controller (recall, only bearer-0 rate is fixed in this case).
Resource-(re)allocation when SLOs cannot be satisfied.
Finally, we study the effects of inherent delay-SLO violations,
which occur when the turnaround time grows prohibitive at
an over-provisioned worker and ingress queue latency ex-
ceeds the delay-SLO even before packets would enter the
pipeline. Batchy implements a pipeline controller to detect
inherent delay-SLO violations and to heuristically re-allocate
resources, decomposing the data flow graph to multiple sub-
graphs to move delay-insensitive traffic to new workers.

Fig. 10 shows the pipeline controller in action (see conf/
mgw_decompose.batchy) in [4]). Again we set up the

USENIX Association 17th USENIX Symposium on Networked Systems Design and Implementation 643

MGW(2,8) pipeline but now only two users open a flow at
bearer-0, with delay-SLO set to 1 msec both in the uplink
and downlink direction. The rest of the users generate bulk
traffic at bearer-1 with no delay-SLO set. In addition, the
service time of the bearer-1 uplink/downlink chains is artifi-
cially increased, which causes the turnaround time to surpass
1 msec and the latency for the delay-sensitive bearer-0 flows
to jump to 4 msec. The pipeline controller kicks in at the 20-
th control period and quickly recovers the pipeline from the
inherent delay-SLO violation: by decomposing the data flow
graph at the output of the Bearer selector splitter module,
it moves all bearer-1 traffic away to new workers. The delay
of bearer-0 flows quickly falls below the SLO, so much so
that from this point Batchy can safely increase buffer sizes
across the pipeline, leading to more than 10× improvement
in the cumulative throughput (not shown in the figure).

6 Related Work

Batch-processing in data-intensive applications. Earlier
work hints at the dramatic performance improvement batch-
processing may bring in data-intensive applications and in
software packet I/O in particular [1, 6, 7, 20, 29, 41, 50]. Con-
sequently, batch-based packet-processing has become ubiqui-
tous in software network switches [2, 3, 14, 15, 20, 27, 30, 36],
OS network stacks and dataplanes [3, 6, 8, 11], user-space
I/O libraries [1, 16], and Network Function Virtualization
[19,21,42,45,50]. Beyond the context of performance-centric
network pipelines, batch-processing has also proved useful in
congestion control [37], data streaming [18], analytics [44],
and machine-learning [10].
Dynamic batch control. Clearly, the batch size should be set
as high as possible to maximize performance [1,6,8,11,16,20,
27,29,41,50]; as long as I/O rates are in the range of multiple
million packets per second the delay introduced this way may
not be substantial [16]. Models to compute the optimal batch
size statically and globally for the entire pipeline, subject to
given delay-SLOs, can be found in [6,22,41,50]; [41] presents
a discrete Markovian queuing model and [22] presents a
discrete-time model for a single-queue single-server system
(c.f. Fig. 4) with known service-time distribution. Dynamic
batch-size control was proposed in [29], but again this work
considers packet I/O only. Perhaps the closest to Batchy is
IX [6], which combines run-to-completion and batch-size op-
timization to obtain a highly-efficient OS network data-plane,
and NBA [20], which observes the importance avoiding “the
batch split problem” in the context of data flow graph schedul-
ing. Batchy extends previous work by providing a unique
combination of dynamic internal batch de-fragmentation (in-
stead of applying batching only to packet I/O), analytic tech-
niques for controlling queue backlogs (using a new abstrac-
tion, fractional buffers), and selective SLO-enforcement at the
granularity of individual service chains (extending batching
to bulk flows even in the presence of delay-sensitive traffic).

Data flow graph scheduling. Data flow graphs are universal
in data-intensive applications, like multimedia [43], machine
learning [10], and robot control [39]. However, most of the
previous work on graph scheduling considers a different con-
text: in [23, 33] the task is to find an optimal starting time for
the parallel execution of processing nodes given dependency
chains encoded as a graph, while [13] considers the version of
the scheduling problem where graph-encoded dependencies
exist on the input jobs rather than on the processing nodes.
Neither of these works takes batch-processing into account.
Service chains and delay-SLOs. With network function vir-
tualization [26] and programmable software switches [24, 38]
becoming mainstream, scheduling in packet-processing sys-
tems has received much attention lately. Previous work con-
siders various aspects of NF scheduling, like parallel [42]
implementation on top of process schedulers [21], commod-
ity data-centers [19, 35], and run-to-completion frameworks
in an isolated manner [36], or in hybrid CPU–GPU systems
[15, 20, 48, 49]. Recent work also considers SLOs: [45] uses
CPU cache isolation to solve the noisy neighbor problem
while [50] extends NFV to GPU-accelerated systems and
observes the importance of controlling batch-size to enforce
delay-SLOs. Apart from complementing these works, Batchy
also contributes to recent effort on network function perfor-
mance profiling (BOLT [17]), efficient worker/CPU resource
allocation for enforcing delay-SLOs (Shenango [34]), and
avoiding cross-CPU issues in NF-scheduling (Metron [19]).

7 Conclusions

In this paper we introduce Batchy, the first general-purpose
data flow graph scheduler that makes batch-based processing
a first class citizen in delay-sensitive data-intensive appli-
cations. Using a novel batch-processing profile and an an-
alytic performance modeling framework, Batchy balances
batch-processing efficiency and latency and delivers strict
SLO-compliance at the millisecond scale even at multiple mil-
lions of packets per seconds of throughput. As such, Batchy
could be used as a central component in 5G mobile cores
(e.g., the MGW use case) and industry-automation (e.g., the
robot-controller use case) applications and latency-optimized
network function virtualization (e.g., the VRF use case). It
may also find use outside the networking context, as the batch-
scheduler in streaming, analytics, machine learning, or mul-
timedia and signal processing applications. In these applica-
tions, however, the default run-to-completion execution model
adopted in Batchy may not provide sufficient workload isola-
tion guarantees; future work therefore involves implementing
a WFQ controller based on the model (8)–(10) to incorporate
Batchy into an explicit process-scheduling model.

References

[1] Advanced Networking Lab/KAIST. Packet I/O Engine. https:

644 17th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

https://github.com/PacketShader/Packet-IO-Engine

//github.com/PacketShader/Packet-IO-Engine.

[2] D. Barach, L. Linguaglossa, D. Marion, P. Pfister, S. Pontarelli,
and D. Rossi. High-speed software data plane via vector-
ized packet processing. IEEE Communications Magazine,
56(12):97–103, December 2018.

[3] Tom Barbette, Cyril Soldani, and Laurent Mathy. Fast
userspace packet processing. In ACM/IEEE ANCS, pages 5–16,
2015.

[4] Batchy. https://github.com/hsnlab/batchy.

[5] Mokhtar S Bazaraa, Hanif D Sherali, and Chitharanjan M
Shetty. Nonlinear programming: Theory and algorithms. John
Wiley & Sons, 2013.

[6] Adam Belay, George Prekas, Ana Klimovic, Samuel Grossman,
Christos Kozyrakis, and Edouard Bugnion. IX: A protected
dataplane operating system for high throughput and low latency.
In USENIX OSDI, pages 49–65, 2014.

[7] Ankit Bhardwaj, Atul Shree, V. Bhargav Reddy, and Sorav
Bansal. A Preliminary Performance Model for Optimizing
Software Packet Processing Pipelines. In ACM APSys, pages
26:1–26:7, 2017.

[8] Jesper Dangaard Brouer. Network stack challenges at increas-
ing speeds. Linux Conf Au, Jan 2015.

[9] The CAIDA UCSD Anonymized Internet Traces - 2019. Avail-
able at http://www.caida.org/data/passive/passive_
dataset.xml, 2019.

[10] Hong-Yunn Chen et al. TensorFlow: A system for large-scale
machine learning. In USENIX OSDI, volume 16, pages 265–
283, 2016.

[11] Jonathan Corbet. Batch processing of network packets. Linux
Weekly News, Aug 2018.

[12] Rohan Gandhi, Hongqiang Harry Liu, Y. Charlie Hu, Guohan
Lu, Jitendra Padhye, Lihua Yuan, and Ming Zhang. Duet:
Cloud scale load balancing with hardware and software. In
ACM SIGCOMM, pages 27–38, 2014.

[13] Mark Goldenberg, Paul Lu, and Jonathan Schaeffer. Trellis-
DAG: A system for structured DAG scheduling. In JSSPP,
pages 21–43, 2003.

[14] Sangjin Han, Keon Jang, Aurojit Panda, Shoumik Palkar,
Dongsu Han, and Sylvia Ratnasamy. SoftNIC: A software NIC
to augment hardware. Technical Report UCB/EECS-2015-155,
EECS Department, University of California, Berkeley, May
2015.

[15] Sangjin Han, Keon Jang, KyoungSoo Park, and Sue Moon.
Packetshader: A GPU-accelerated software router. In ACM
SIGCOMM, pages 195–206, 2010.

[16] Intel. Data Plane Development Kit. http://dpdk.org.

[17] Rishabh Iyer, Luis Pedrosa, Arseniy Zaostrovnykh, Solal
Pirelli, Katerina Argyraki, and George Candea. Performance
contracts for software network functions. In USENIX NSDI,
pages 517–530, 2019.

[18] Apache Kafka. https://kafka.apache.org.

[19] Georgios P. Katsikas, Tom Barbette, Dejan Kostić, Rebecca
Steinert, and Gerald Q. Maguire Jr. Metron: NFV service
chains at the true speed of the underlying hardware. In USENIX
NSDI, pages 171–186, 2018.

[20] Joongi Kim, Keon Jang, Keunhong Lee, Sangwook Ma, Jun-
hyun Shim, and Sue Moon. NBA (Network Balancing Act): A
high-performance packet processing framework for heteroge-
neous processors. In EuroSys, pages 22:1–22:14, 2015.

[21] Sameer G. Kulkarni, Wei Zhang, Jinho Hwang, Shriram Ra-
jagopalan, K. K. Ramakrishnan, Timothy Wood, Mayutan Aru-
maithurai, and Xiaoming Fu. NFVnice: Dynamic Backpressure
and Scheduling for NFV Service Chains. In ACM SIGCOMM,
pages 71–84, 2017.

[22] S. Lange, L. Linguaglossa, S. Geissler, D. Rossi, and T. Zin-
ner. Discrete-time modeling of NFV accelerators that exploit
batched processing. In IEEE INFOCOM, pages 64–72, April
2019.

[23] Charles E. Leiserson and James B. Saxe. Retiming syn-
chronous circuitry. Algorithmica, 6(1-6):5–35, June 1991.

[24] T. Lévai, G. Pongrácz, P. Megyesi, P. Vörös, S. Laki, F. Németh,
and G. Rétvári. The price for programmability in the software
data plane: The vendor perspective. IEEE Journal on Selected
Areas in Communications, 36(12):2621–2630, December 2018.

[25] Bojie Li, Kun Tan, Layong (Larry) Luo, Yanqing Peng, Ren-
qian Luo, Ningyi Xu, Yongqiang Xiong, Peng Cheng, and
Enhong Chen. ClickNP: Highly flexible and high performance
network processing with reconfigurable hardware. In ACM
SIGCOMM, pages 1–14, 2016.

[26] L. Linguaglossa, S. Lange, S. Pontarelli, G. Rétvári, D. Rossi,
T. Zinner, R. Bifulco, M. Jarschel, and G. Bianchi. Survey
of performance acceleration techniques for network function
virtualization. Proceedings of the IEEE, pages 1–19, 2019.

[27] Leonardo Linguaglossa, Dario Rossi, Salvatore Pontarelli,
Dave Barach, Damjan Marjon, and Pierre Pfister. High-
speed software data plane via vectorized packet processing.
Tech. Rep., 2017. https://perso.telecom-paristech.
fr/drossi/paper/vpp-bench-techrep.pdf.

[28] Nesredin Mahmud et al. Evaluating industrial applicability
of virtualization on a distributed multicore platform. In IEEE
ETFA, 2014.

[29] M. Miao, W. Cheng, F. Ren, and J. Xie. Smart batching: A load-
sensitive self-tuning packet I/O using dynamic batch sizing. In
IEEE HPCC, pages 726–733, Dec 2016.

[30] László Molnár, Gergely Pongrácz, Gábor Enyedi, Zoltán Lajos
Kis, Levente Csikor, Ferenc Juhász, Attila Kőrösi, and Gábor
Rétvári. Dataplane specialization for high-performance Open-
Flow software switching. In ACM SIGCOMM, pages 539–552,
2016.

[31] Robert Morris, Eddie Kohler, John Jannotti, and M. Frans
Kaashoek. The Click modular router. In ACM SOSP, pages
217–231, 1999.

[32] J. Nagle. Congestion control in IP/TCP internetworks. RFC
896, RFC Editor, January 1984.

USENIX Association 17th USENIX Symposium on Networked Systems Design and Implementation 645

https://github.com/PacketShader/Packet-IO-Engine
https://github.com/hsnlab/batchy
 http://www.caida.org/data/passive/passive_dataset.xml
 http://www.caida.org/data/passive/passive_dataset.xml
http://dpdk.org
https://kafka.apache.org
https://perso.telecom-paristech.fr/drossi/paper/vpp-bench-techrep.pdf
https://perso.telecom-paristech.fr/drossi/paper/vpp-bench-techrep.pdf

[33] T. W. O’Neil, S. Tongsima, and E. H. Sha. Extended retiming:
optimal scheduling via a graph-theoretical approach. In IEEE
ICASSP, volume 4, 1999.

[34] Amy Ousterhout, Joshua Fried, Jonathan Behrens, Adam Belay,
and Hari Balakrishnan. Shenango: Achieving high CPU effi-
ciency for latency-sensitive datacenter workloads. In USENIX
NSDI, pages 361–378, 2019.

[35] Shoumik Palkar, Chang Lan, Sangjin Han, Keon Jang, Aurojit
Panda, Sylvia Ratnasamy, Luigi Rizzo, and Scott Shenker. E2:
A framework for NFV applications. In ACM SOSP, pages
121–136, 2015.

[36] Aurojit Panda, Sangjin Han, Keon Jang, Melvin Walls, Sylvia
Ratnasamy, and Scott Shenker. NetBricks: Taking the V out of
NFV. In USENIX OSDI, pages 203–216, 2016.

[37] Jonathan Perry, Hari Balakrishnan, and Devavrat Shah. Flow-
tune: Flowlet control for datacenter networks. In USENIX
NSDI, pages 421–435, 2017.

[38] Ben Pfaff et al. The design and implementation of Open
vSwitch. In USENIX NSDI, pages 117–130, 2015.

[39] Morgan Quigley, Ken Conley, Brian P. Gerkey, Josh Faust,
Tully Foote, Jeremy Leibs, Rob Wheeler, and Andrew Y. Ng.
ROS: an open-source Robot Operating System. In ICRA Work-
shop on Open Source Software, 2009.

[40] Brent Stephens, Aditya Akella, and Michael Swift. Loom:
Flexible and efficient NIC packet scheduling. In USENIX
NSDI, pages 33–46, February 2019.

[41] Z. Su, T. Begin, and B. Baynat. Towards including batch
services in models for DPDK-based virtual switches. In GIIS,
pages 37–44, 2017.

[42] Chen Sun, Jun Bi, Zhilong Zheng, Heng Yu, and Hongxin Hu.
NFP: enabling network function parallelism in NFV. In ACM
SIGCOMM, pages 43–56, 2017.

[43] Wim Taymans, Steve Baker, Andy Wingo, Ronald S. Bultje,
and Stefan Kost. GStreamer Application Development Manual.
Samurai Media Limited, United Kingdom, 2016.

[44] The Apache Spark project. Setting the Right
Batch Interval. https://spark.apache.org/docs/
latest/streaming-programming-guide.html#
setting-the-right-batch-interval.

[45] Amin Tootoonchian, Aurojit Panda, Chang Lan, Melvin Walls,
Katerina Argyraki, Sylvia Ratnasamy, and Scott Shenker.
ResQ: Enabling SLOs in network function virtualization. In
USENIX NSDI, pages 283–297, 2018.

[46] Carl A Waldspurger and E Weihl W. Stride scheduling: deter-
ministic proportional-share resource management, 1995. Mas-
sachusetts Institute of Technology.

[47] Ed Warnicke. Vector Packet Processing - One Terabit Router,
July 2017.

[48] Xiaodong Yi, Jingpu Duan, and Chuan Wu. GPUNFV: A
GPU-accelerated NFV system. In ACM APNet, pages 85–91,
2017.

[49] Kai Zhang, Bingsheng He, Jiayu Hu, Zeke Wang, Bei Hua,
Jiayi Meng, and Lishan Yang. G-NET: Effective GPU sharing
in NFV systems. In USENIX NSDI, pages 187–200, 2018.

[50] Zhilong Zheng, Jun Bi, Haiping Wang, Chen Sun, Heng Yu,
Hongxin Hu, Kai Gao, and Jianping Wu. Grus: Enabling
latency SLOs for GPU-accelerated NFV systems. In IEEE
ICNP, pages 154–164, 2018.

Appendix

A Data Flow Graph Scheduling

Scheduling in the context of data flow graphs means to de-
cide which module to execute next. The goal of the scheduler
is to provide efficiency and fairness: efficiency is ultimately
determined by the amount of load the system can process
from the ingress modules to the egress modules and fairness
is generally measured by the extent to which the eventual re-
source allocation is rate-proportional [21]. Here, limited CPU
resources need to be allocated between competing modules
based on the combination of the offered load (or arrival rate)
for the module and its processing cost. Intuitively, if either
one of these metrics is fixed then the CPU allocation should
be proportional to the other metric. Consider the example in
Fig. 2; if the two modules have the same CPU cost but NF1
has twice the offered load than NF2, then we want it to have
twice the CPU time allocated, and hence twice the output
rate, relative to NF2. Alternatively, if the NFs have the same
offered load but NF1 incurs twice the processing cost then
we expect it to get twice as much CPU time, resulting in both
modules having roughly the same output rate.
Explicit scheduling. In explicit scheduling there is a stan-
dalone mechanism that runs side-by-side with the pipeline
and executes modules in the given order. A typical exam-
ple is Weighted Fair Queueing (WFQ) or Completely Fair
Scheduling (CFS), where the user assigns integer weights to

ide
al

W
FQ

RTC

0
0.

5
1

Pkt rate

ide
al

W
FQ

RTC

0
0.

5
1

1.
5

2

CPU share

W
FQ

RTC

0
20

0
40

0
60

0

Delay

(a) Asymmetric rate

ide
al

W
FQ

RTC

0
0.

5
1

Pkt rate

ide
al

W
FQ

RTC

0
0.

5
1

1.
5

2

CPU share

W
FQ

RTC

0
20

0
40

0
60

0

Delay

(b) Asymmetric cost

Figure 11: Rate-proportional fairness in WFQ and run-to-
completion scheduling in the asymmetric rate case (NF1 re-
ceives twice the offered load of NF2 and CPU costs are equal)
and asymmetric cost case (same offered load but NF1 needs
twice as much CPU time to process a packet as NF2). Packet
rate is in mpps and delay is in µsec, and denotes the first
flow while denotes the second flow as in Fig. 2.

646 17th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

https://spark.apache.org/docs/latest/streaming-programming-guide.html#setting-the-right-batch-interval
https://spark.apache.org/docs/latest/streaming-programming-guide.html#setting-the-right-batch-interval
https://spark.apache.org/docs/latest/streaming-programming-guide.html#setting-the-right-batch-interval

Batch size [pkt] Rate [Mpps] Delay [% of violations]
Pipeline # modules Null Max NFVnice Batchy/on-off Batchy/full Null Max NFVnice Batchy/on-off Batchy/full Null Max NFVnice Batchy/on-off Batchy/full

L2L3(1) 9 31.5 32 31.8 31.5 31.5 8.29 8.31 4.78 8.29 8.47 0% 100% 100% 0% 0%
L2L3(4) 21 12.6 32 14.53 12.6 29.2 7.49 7.46 5.86 7.26 7.77 0% 100% 13% 0% 0%
L2L3(8) 37 7.0 32 8.1 5.8 30.9 6.26 7.38 4.65 5.18 7.42 0% 100% 0% 0% 0%
L2L3(16) 69 2.6 32 3.92 3.7 28.9 3.63 6.11 2.75 4.94 6.33 0% 100% 0% 0% 0.5%
*L2L3(16) 69 8.5 32 4.7 9.2 24.2 5.24 5.7 2.4 5.25 5.79 0% 75% 2% 8.3% 2.4%
*L2L3(32) 133 3.1 32 3 5.8 24.5 4.47 5.32 1.46 4.61 5.48 0% 63% 0% 1.9% 1.3%
*L2L3(64) 261 1.1 32 2.1 4.9 23.4 2.12 5.17 0.82 3.81 5.03 0% 68% 1% 5.7% 5.2%
GW(1) 12 31.5 32 31.7 31.5 31.5 6.06 6.08 3.11 6.08 6.08 0% 100% 100% 0% 0%
GW(8) 61 5.6 32 6.21 5.6 31.4 4.2 5.22 2.7 4.23 5.25 0% 100% 23.6% 0% 0.6%
GW(16) 117 2.9 32 3.16 2.9 30.7 2.66 4.51 1.47 2.8 4.58 0% 100% 44.3% 0% 0.5%
GW(64) 453 2.2 32 2 2.2 24.4 1.85 3.39 0.54 1.86 3.73 0% 100% 0% 0% 5.2%
VRF(1,1) 11 32 32 32 32 32 5.88 5.76 3.48 5.87 5.92 0% 100% 100% 0% 0%
VRF(2,4) 43 5.3 32 7.1 10.7 22.2 3.49 4.77 2.53 4.37 4.03 0% 100% 54% 0% 2.2%
VRF(16,4) 323 2 32 2 10.8 24.4 1.01 2.7 0.42 2.41 2.84 0% 100% 0% 0% 8.9%
VRF(12,8) 435 1.7 32 1.7 5.9 23.4 0.95 2.34 0.35 1.82 2.5 0% 100% 0% 0% 8.2%
MGW(2,4) 110 4.5 32 4.5 13.7 17.3 1.75 3.15 1.03 1.78 2.03 0% 100% 100% 0% 0%
MGW(4,4) 206 4 32 3.7 11.4 20.2 1.5 2.83 0.8 1.69 2.19 0% 100% 61.6% 0% 1%
MGW(8,4) 398 5.1 32 4.1 20.9 25.7 1.61 2.77 0.6 2.12 2.5 0% 100% 0% 0% 5%
MGW(16,4) 782 4.9 32 4.1 25.9 27.8 1.49 2.34 0.39 2.1 2.25 0% 100% 0% 0% 0.3%
RC(16) 25 2.24 32 3.43 30.14 30.14 0.43 3.27 0.58 3.25 3.27 100% 100% 100% 0% 0%

Table 2: Static evaluation results with the null-controller, max-controller, NFVnice, Batchy/on-off and Batchy/full on different
pipelines: number of modules, average batch-size over the pipeline, packet rate, and delay statistics in terms of the percentage of
control periods when a delay-SLO violation was detected for at least one flow.

modules and the scheduler ensures that the runtime resource
allocation will be proportional to modules’ weight. WFQ does
not provide rate-proportional fairness out of the box; e.g., in
the example of Fig. 2 NF1 will not receive more CPU time
neither when its offered load (asymmetric rate) or process-
ing cost (asymmetric cost) is twice that of NF2 (see Fig. 11).
Correspondingly, WFQ schedulers need substantial tweaking
to approximate rate-proportional fairness, and need further
optimization to avoid head-of-line blocking and late drops
along a service chain [21]. Even running the scheduler itself
may incur non-trivial runtime overhead. Worse still, packets
may get dropped inside the pipeline when internal queues
overflow; this may be a feature (e.g., when we want to apply
rate-limitation or traffic policing via the scheduler) or a bug
(when useful traffic gets lost at an under-provisioned queue).

Run-to-completion execution. This model eliminates the
explicit scheduler and its runtime overhead all together. In
run-to-completion execution the entire input batch is traced
though the data flow graph in one shot, by upstream mod-
ules automatically scheduling downstream modules whenever
there is work to be done [6, 14]. As Fig. 11 shows, this model
introduces much smaller delay vs. explicit scheduling, as it
needs no internal queues. In addition, run-to-completion pro-
vides rate-proportional fairness out-of-the-box, even without
additional tweaking and without the risk of head-of-line block-
ing and internal packet drops. This yields an appealingly sim-
ple “schedulerless” design. On the other hand, since module
execution order is automatically fixed by the pipeline and the
scheduler cannot by itself drop packets, the share of CPU time
a module gets is determined by the offered load only. This
makes enforcing rate-type SLOs through a run-to-completion
scheduler difficult. In our example, if NF2 receives twice the
packet rate of NF1 then it will receive twice the CPU share,
and hence the second flow will have twice the output rate,
even though we may want this to be the other way around.

B Static Evaluations: Detailed Results

The detailed static performance results are given in Table 2.
The table specifies the number of modules in each pipeline,
the batch size statistics averaged across each module in time,
the throughput as the cumulative packet rate summed over all
flows, and the delay-SLO violation statistics as the percentage
of control periods when we detected an SLO violation for
at least one flow, for each of the 5G NF use cases, varying
pipeline complexity using different settings for the parameters
n and m.

C The Fractional Buffer

The below algorithm summarizes the execution model of a
fractional buffer. Here, queue means the internal queue of the
fractional buffer, b is the trigger, q.pop(x) dequeues x packets
from the beginning of queue q, and q.push(batch) appends
the packets of batch to the queue q.

procedure FRACTIONALBUFFER::PUSH(batch)
while queue.size≤ b AND batch.size > 0 do

queue.push(batch.pop(1))
end while
if queue.size = b then

new_batch← queue.pop(b)
process new_batch through the network function
put v’s downstream modules to the run queue
queue.push(batch.pop(batch.size))

end if
end procedure

D The Projected Gradient Controller

Below, we discuss the high-level ideas in the projected gra-
dient controller implemented in Batchy and then we give the
detailed pseudocode.

First, we compute the objective function gradient ∇l =

USENIX Association 17th USENIX Symposium on Networked Systems Design and Implementation 647

[∂l/∂bv : v ∈V], which measures the sensitivity of the total sys-
tem load l = ∑v∈V lv as of (11) to small changes in the trigger
bv for each module:

∂l
∂bv

=−
r̃vT0,v

b2
v

=−
x̃vT0,v

bv
.

The delay-gradients ∇t f = [∂t f/∂bv : f ∈ F] are as follows:

∂t f

∂bv
=

{
1
r̃v
+T1,v if v ∈ p f

0 otherwise

Note that the delay t f of a flow f is affected only by the
modules along its path p f , as long as the turnaround time is
considered constant as of (3).

Second, project the objective gradient ∇l to the feasible
(i.e., SLO-compliant) space. For this, identify the flows f that
may be in violation of the delay-SLO: t̃ f ≥ (1−δ)D f .

Third, let M be a matrix with row i set to ∇t f if f is the i-th
flow in delay violation and compute the projected gradient
∆b =−(I−MT (MMT)−1M)∇l. Note that if M is singular or
the projected gradient becomes zero then small adjustments
need to be made to the projection matrix [5].

Fourth, perform a line-search along the projected gradient
∆b. If for some module v the corresponding projected gradient
component ∆bv is strictly positive (it cannot be negative) then
calculate the largest possible change in bv that still satisfies
the delay-SLO of all flows traversing v:

λv = min
f∈F :v∈p f

D f − t̃ f

∆bv
.

Finally, take λ = minv∈V λv and adjust the trigger of each
module v to bv + d∆bvλe. Rounding the trigger up to the
nearest integer yields a more aggressive control.

The below pseudo-code describes the projected gradient
controller in detail. Vectors and matrices are typeset in bold
in order to simplify the distinction from scalars. We generally
substitute matrix inverses with the Moore-Penrose inverse in
order to take care of the cases when M is singular.

procedure PROJECTEDGRADIENT(G ,F ,D, f)

M is a matrix with row i set to ∇t f =
[

∂t f
∂bv

: f ∈ F
]
, where f

is the i-th flow in F with t̃ f ≥ (1−δ)D f
. Gradient projection
while True do

P = I−MT (MMT)−1M
∆b = P∇l
if ∆b 6= 0 then break
w =−(MMT)−1M∇l
if w≥ 0 then return . Optimal KKT point reached
delete row for f from M for some f ∈ F : w f < 0

end while
. Line search
for v ∈V, f ∈ pv do

if ∆bv > 0 then

λv = min
f∈F :v∈p f

⌈
D f − t̃ f

∆bv

⌉

end if
end for
λ = minv∈V λv
for v ∈V do SETTRIGGER(v, bv +∆bvλ)

end procedure

E The Feasibility-recovery Algorithm

The projected gradient controller cannot by itself recover from
situations when a fractional buffer at some module is triggered
at a too small rate to deliver the required delay-SLO to each
flow traversing the module. The below pseudo-code describes
the feasibility recovery process implemented in Batchy, which
is implemented to handle such situations.

procedure FEASIBILITYRECOVERY(G ,F ,D, f)
for f ∈ F do t f ← t̃ f
. Recover from SLO violation
for v ∈V : bv ≥ b̃in

v do
if ∃ f ∈ F : v ∈ p f AND t f ≥ (1− ε)D f then

∆bv = max
f∈F :v∈p f∧
t f≥(1−ε)D f

⌈
D f − t f
∂t f/∂bv

⌉
if ∆bv > bv− b̃in

v then ∆bv← bv− b̃in
v

for f ∈ F : v ∈ p f do t f ← t f −
∂t f
∂bv

∆bv
bv← bv−∆bv

end if
end for
. Injecting a buffer
for v ∈V : bv = 0 do

if ∀ f ∈ F : v ∈ p f it holds that t f < (1− ε)D f then

∆bv = min
f∈F :v∈p f∧
t f <(1−ε)D f

⌈
t f −D f
∂t f/∂bv

⌉
if ∆bv > b̃in

v then ∆bv← b̃in
v

for f ∈ F : v ∈ p f do t f ← t f +
∂t f
∂bv

∆bv
bv← ∆bv

end if
end for
for v ∈V do SETTRIGGER(v, bv)

end procedure

F The Data Flow Graph Decomposition Algo-
rithm

Pipeline decomposition is initiated in Batchy whenever an
inherent delay-SLO violation is detected. This occurs when
a worker is overprovisioned and the turnaround time grows
beyond the SLO for a delay-sensitive flow; in such cases
Batchy migrates delay-insensitive traffic to new workers to
address SLO violations. The below pseudo-code describes the
pipeline decomposition procedure implemented in Batchy.

procedure DECOMPOSEPIPELINE(G ,F ,D, f)
Vt ← /0

Ft ← /0

τt ← /0

for f ∈ (F in ascending order of D f) do

648 17th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

if CHECK_DELAY_SLO(Vt ,Ft ,τt , f) then
Ft ← Ft ∪ f
Vt ←Vt ∪ p f
τt ← τt +∑v∈Pf ,v/∈Vt

(T0v +T1vB)
else

M← /0

MIGRATEFLOWS(Vt ,Ft ,M,F)
end if

end for
end procedure
procedure MIGRATEFLOWS(Vt ,Ft ,M,F)

for g ∈ (F \Ft) do
for v ∈ pg do

if v /∈Vt and v /∈M then
create new worker
add a queue before v
attach queue to new worker
M←M∪ v

end if
end for

end for
end procedure
procedure CHECKDELAYSLO(Vt ,Ft ,τt , f)

for g ∈ (Ft ∪ f) do
if (τt +∑v∈Pf ,v/∈Vt

(T0v +T1vB)+∑v∈Pg
(T0v +T1v))> Dg

then
return False

end if
return True

end for
end procedure

USENIX Association 17th USENIX Symposium on Networked Systems Design and Implementation 649

	Introduction
	Profiling Batch-processing Gain
	Batch-scheduling in Data Flow Graphs
	Implementation
	Evaluation
	Related Work
	Conclusions

