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ABSTRACT
Today’s cloud-based services integrate globally distributed re-
sources into seamless computing platforms. Provisioning and ac-
counting for the resource usage of these Internet-scale applications
presents a challenging technical problem. This paper presents the
design and implementation of distributed rate limiters, which work
together to enforce a global rate limit across traffic aggregates at
multiple sites, enabling the coordinated policing of a cloud-based
service’s network traffic. Our abstraction not only enforces a global
limit, but also ensures that congestion-responsive transport-layer
flows behave as if they traversed a single, shared limiter. We
present two designs—one general purpose, and one optimizedfor
TCP—that allow service operators to explicitly trade off between
communication costs and system accuracy, efficiency, and scalabil-
ity. Both designs are capable of rate limiting thousands of flows
with negligible overhead (less than 3% in the tested configuration).
We demonstrate that our TCP-centric design is scalable to hundreds
of nodes while robust to both loss and communication delay, mak-
ing it practical for deployment in nationwide service providers.

Categories and Subject Descriptors
C.2.3 [Computer Communication Networks]: Network manage-
ment

General Terms
Algorithms, Management, Performance

Keywords
Rate Limiting, Token Bucket, CDN

1. INTRODUCTION
Yesterday’s version of distributed computing was a self-

contained, co-located server farm. Today, applications are increas-
ingly deployed on third-party resources hosted across the Inter-
net. Indeed, the rapid spread of open protocols and standards
like Web 2.0 has fueled an explosion of compound services that
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script together third-party components to deliver a sophisticated
service [27, 29]. These specialized services are just the beginning:
flagship consumer and enterprise applications are increasingly be-
ing delivered in the software-as-a-service model [9]. For example,
Google Documents, Groove Office, and Windows Live are early ex-
amples of desktop applications provided in a hosted environment,
and represent the beginning of a much larger trend.

Aside from the functionality and management benefits Web-
based services afford the end user, hosted platforms present sig-
nificant benefits to the service provider as well. Rather thande-
ploy each component of a multi-tiered application within a partic-
ular data center, so-called “cloud-based services” can transparently
leverage widely distributed computing infrastructures. Google’s
service, for example, reportedly runs on nearly half-a-million
servers distributed around the world [8]. Potential world-wide scale
need not be limited to a few large corporations, however. Recent
offerings like Amazon’s Elastic Compute Cloud (EC2) promise to
provide practically infinite resources to anyone willing topay [3].

One of the key barriers to moving traditional applications to the
cloud, however, is the loss of cost control [17]. In the cloud-based
services model, cost recovery is typically accomplished through
metered pricing. Indeed, Amazon’s EC2 charges incrementally
per gigabyte of traffic consumed [3]. Experience has shown, how-
ever, that ISP customers prefer flat fees to usage-based pricing [30].
Similarly, at a corporate level, IT expenditures are generally man-
aged as fixed-cost overheads, not incremental expenses [17]. A
flat-fee model requires the ability for a provider to limit consump-
tion to control costs. Limiting global resource consumption in a
distributed environment, however, presents a significant technical
challenge. Ideally, resource providers would not require services
to specify the resource demands of each distributed component a
priori ; such fine-grained measurement and modeling can be chal-
lenging for rapidly evolving services. Instead, they should provide
a fixed price for an aggregate, global usage, and allow services to
consume resources dynamically across various locations, subject to
the specified aggregate limit.

In this paper, we focus on a specific instance of this problem:
controlling the aggregate network bandwidth used by a cloud-based
service, or distributed rate limiting (DRL). Our goal is to allow a set
of distributed traffic rate limiters to collaborate to subject a class of
network traffic (for example, the traffic of a particular cloud-based
service) to a single, aggregate global limit. While traffic policing is
common in data centers and widespread in today’s networks, such
limiters typically enforce policy independently at each location [1].
For example, a resource provider with 10 hosting centers maywish
to limit the total amount of traffic it carries for a particular service
to 100 Mbps. Its current options are to either limit the service to
100 Mbps at each hosting center (running the risk that they may all



use this limit simultaneously, resulting in 1 Gbps of total traffic), or
to limit each center to a fixed portion (i.e., 10 Mbps) which over-
constrains the service traffic aggregate and is unlikely to allow the
service to consume its allocated budget unless traffic is perfectly
balanced across the cloud.

The key challenge of distributed rate limiting is to allow indi-
vidual flows to compete dynamically for bandwidth not only with
flows traversing the same limiter, but with flows traversing other
limiters as well. Thus, flows arriving at different limitersshould
achieve the same rates as they would if they all were traversing a
single, shared rate limiter. Fairness between flows inside atraffic
aggregate depends critically on accurate limiter assignments, which
in turn depend upon the local packet arrival rates, numbers of flows,
and up/down-stream bottleneck capacities. We address thisissue by
presenting the illusion of passing all of the traffic througha single
token-bucket rate limiter, allowing flows to compete against each
other for bandwidth in the manner prescribed by the transport pro-
tocol(s) in use. For example, TCP flows in a traffic aggregate will
share bandwidth in a flow-fair manner [6]. The key technical chal-
lenge to providing this abstraction is measuring the demandof the
aggregate at each limiter, and apportioning capacity in proportion
to that demand. This paper makes three primary contributions:

Rate Limiting Cloud-based Services.We identify a key challenge
facing the practical deployment of cloud-based services and iden-
tify the chief engineering difficulties: how to effectivelybalance
accuracy(how well the system bounds demand to the aggregate
rate limit),responsiveness(how quickly limiters respond to varying
traffic demands), andcommunicationbetween the limiters. A dis-
tributed limiter cannot be simultaneously perfectly accurate and re-
sponsive; the communication latency between limiters bounds how
quickly one limiter can adapt to changing demand at another.

Distributed Rate Limiter Design. We present the design and im-
plementation of two distributed rate limiting algorithms.First, we
consider an approach,global random drop(GRD), that approxi-
mates the number, but not the precise timing, of packet drops. Sec-
ond, we observe that applications deployed using Web services will
almost exclusively use TCP. By incorporating knowledge about
TCP’s congestion control behavior, we design another mechanism,
flow proportional share(FPS), that provides improved scalability.

Evaluation and Methodology.We develop a methodology to eval-
uate distributed rate limiters under a variety of traffic demands and
deployment scenarios using both a local-area testbed and anInter-
net testbed, PlanetLab. We demonstrate that both GRD and FPS
exhibit long-term behavior similar to a centralized limiter for both
mixed and homogeneous TCP traffic in low-loss environments.
Furthermore, we show that FPS scales well, maintaining near-ideal
50-Mbps rate enforcement and fairness up to 490 limiters with a
modest communication budget of 23 Kbps per limiter.

2. CLASSES OF CLOUDS
Cloud-based services come in varying degrees of complexity;

as the constituent services become more numerous and dynamic,
resource provisioning becomes more challenging. We observe that
the distributed rate limiting problem arises in any servicecomposed
of geographically distributed sites. In this section we describe three
increasingly mundane applications, each illustrating howDRL em-
powers service providers to enforce heretofore unrealizable traffic
policies, and how it offers a new service model to customers.

2.1 Limiting cloud-based services
Cloud-based services promise a “utility” computing abstraction

in which clients see a unified service and are unaware that thesys-

tem stitches together independent physical sites to provide cycles,
bandwidth, and storage for a uniform purpose. In this context, we
are interested in rate-based resources that clients sourcefrom a sin-
gle provider across many sites or hosting centers.

For clouds, distributed rate limiting provides the critical ability
for resource providers to control the use of network bandwith as if it
were all sourced from a single site. A provider runs DRL across its
sites, setting global limits on the total network usage of particular
traffic classes or clients. Providers are no longer requiredto mi-
grate requests to accomodate static bandwidth limits. Instead, the
available bandwidth gravitates towards the sites with the most de-
mand. Alternatively, clients may deploy DRL to control aggregate
usage across providers as they see fit. DRL removes the artificial
separation of access metering and geography that results inexcess
cost for the client and/or wasted resources for service providers.

2.2 Content distribution networks
While full-scale cloud-based computing is in its infancy, simple

cloud-based services such as content-distribution networks (CDNs)
are prevalent today and can benefit from distributed rate limiting.
CDNs such as Akamai provide content replication services tothird-
party Web sites. By serving Web content from numerous geograph-
ically diverse locations, CDNs improve the performance, scalabil-
ity, and reliability of Web sites. In many scenarios, CDN operators
may wish to limit resource usage either based on the content served
or the requesting identity. Independent rate limiters are insufficient,
however, as content can be served from any of numerous mirrors
around the world according to fluctuating demand.

Using DRL, a content distribution network can set per-customer
limits based upon service-level agreements. The CDN provides ser-
vice to all sites as before, but simply applies DRL to all out-bound
traffic for each site. In this way, the bandwidth consumed by acus-
tomer is constrained, as is the budget required to fund it, avoiding
the need for CDNs to remove content for customers who cannot
pay for their popularity.1 Alternatively, the CDN can use DRL as a
protective mechanism. For instance, the CoDeeN content distribu-
tion network was forced to deploy an ad-hoc approach to rate limit
nefarious users across proxies [37]. DRL makes it simple to limit
the damage on the CDN due to such behavior by rate limiting traffic
from an identified set of users. In summary, DRL provides CDNs
with a powerful tool for managing access to their clients’ content.

2.3 Internet testbeds
Planetlab supports the deployment of long-lived service proto-

types. Each Planetlab service runs in aslice—essentially a fraction
of the entire global testbed consisting of1/N of each machine.
Currently Planetlab provides work-conserving bandwidth limits at
each individual site, but the system cannot coordinate bandwidth
demands across multiple machines [18].

DRL dynamically apportions bandwidth based upon demand, al-
lowing Planetlab administrators to set bandwidth limits ona per-
slice granularity, independent of which nodes a slice uses.In the
context of a single Planetlab service, the service administrator may
limit service to a particular user. In Section 5.7 we show that DRL
provides effective limits for a Planetlab service distributed across
North America. In addition, while we focus upon network ratelim-
iting in this paper, we have begun to apply our techniques to control
other important rate-based resources such as CPU.

1For example, Akamai customers are typically not rate limited and
billed in arrears for actual aggregate usage, leaving them open to
potentially large bills. If demand dramatically exceeds expectation
and/or their willingness to pay, manual intervention is required [2].



2.4 Assumptions and scope
Like centralized rate limiting mechanisms, distributed rate lim-

iting does not provide QoS guarantees. Thus, when customerspay
for a given level of service, providers must ensure the availability of
adequate resources for the customer to attain its given limit. In the
extreme, a provider may need to provision each limiter with enough
capacity to support a service’s entire aggregate limit. Nevertheless,
we expect many deployments to enjoy considerable benefits from
statistical multiplexing. Determining the most effectiveprovision-
ing strategy, however, is outside the scope of this paper.

Furthermore, we assume that mechanisms are already in place
to quickly and easily identify traffic belonging to a particular ser-
vice [25]. In many cases such facilities, such as simple address or
protocol-based classifiers, already exist and can be readily adopted
for use in a distributed rate limiter. In others, we can leverage re-
cent work on network capabilities [32, 39] to provide unforgeable
means of attribution. Finally, without loss of generality,we discuss
our solutions in the context of a single service; multiple services
can be limited in the same fashion.

3. LIMITER DESIGN
We are concerned with coordinating a set of topologically dis-

tributed limiters to enforce an aggregate traffic limit while retaining
the behavior of a centralized limiter. That is, a receiver should not
be able to tell whether the rate limit is enforced at one or many lo-
cations simultaneously. Specifically, we aim to approximate a cen-
tralized token-bucket traffic-policing mechanism. We choose a to-
ken bucket as a reference mechanism for a number of reasons: it is
simple, reasonably well understood, and commonly deployedin In-
ternet routers. Most importantly, it makes instantaneous decisions
about a packet’s fate—packets are either forwarded or dropped—
and so does not introduce any additional queuing.

We do not assume anything about the distribution of traffic across
limiters. Thus, traffic may arrive at any or all of the limiters at any
time. We use a peer-to-peer limiter architecture: each limiter is
functionally identical and operates independently. The task of a
limiter can be split into three separate subtasks: estimation, com-
munication, and allocation. Every limiter collects periodic mea-
surements of the local traffic arrival rate and disseminatesthem to
the other limiters. Upon receipt of updates from other limiters, each
limiter computes its own estimate of the global aggregate arrival
rate that it uses to determine how to best service its local demand
to enforce the global rate limit.

3.1 Estimation and communication
We measure traffic demand in terms of bytes per unit time. Each

limiter maintains an estimate of both local and global demand. Es-
timating local arrival rates is well-studied [15, 34]; we employ a
strategy that computes the average arrival rate over fixed time in-
tervals and applies a standard exponentially-weighted moving av-
erage (EWMA) filter to these rates to smooth out short-term fluc-
tuations. The estimate interval length and EWMA smoothing pa-
rameter directly affect the ability of a limiter to quickly track and
communicate local rate changes; we determine appropriate settings
in Section 5.

At the end of each estimate interval, local changes are merged
with the current global estimate. In addition, each limitermust dis-
seminate changes in local arrival rate to the other limiters. The sim-
plest form of communication fabric is a broadcast mesh. While fast
and robust, a full mesh is also extremely bandwidth-intensive (re-
quiringO(N2) update messages per estimate interval). Instead, we
implement a gossip protocol inspired by Kempeet al. [22]. Such

GRD-HANDLE-PACKET(P : Packet)

1 demand←
n

P

i

ri

2 bytecount← bytecount+LENGTH(P )

3 if demand> limit then
4 dropprob← (demand− limit) / demand
5 if RAND() < dropprobthen
6 DROP(P )

7 return
8 FORWARD(P )

Figure 1: Pseudocode for GRD. Each valueri corresponds to
the current estimate of the rate at limiter i.

“epidemic” protocols have been widely studied for distributed co-
ordination; they require little to no communication structure, and
are robust to link and node failures [10]. At the end of each es-
timate interval, limiters select a fixed number of randomly chosen
limiters to update; limiters use any received updates to update their
global demand estimates. The number of limiters contacted—the
gossip branching factor—is a parameter of the system. We com-
municate updates via a UDP-based protocol that is resilientto loss
and reordering; for now we ignore failures in the communication
fabric and revisit the issue in Section 5.6. Each update packet is
48 bytes, including IP and UDP headers. More sophisticated com-
munication fabrics may reduce coordination costs using structured
approaches [16]; we defer an investigation to future work.

3.2 Allocation
Having addressed estimation and communication mechanisms,

we now consider how each limiter can combine local measure-
ments with global estimates to determine an appropriate local limit
to enforce. A natural approach is to build a global token bucket
(GTB) limiter that emulates the fine-grained behavior of a central-
ized token bucket. Recall that arriving bytes require tokens to be
allowed passage; if there are insufficient tokens, the tokenbucket
drops packets. The rate at which the bucket regenerates tokens dic-
tates the traffic limit. In GTB, each limiter maintains its own global
estimate and uses reported arrival demands at other limiters to esti-
mate the rate of drain of tokens due to competing traffic.

Specifically, each limiter’s token bucket refreshes tokensat the
global rate limit, but removes tokens both when bytes arrivelocally
and to account for expected arrivals at other limiters. At the end
of every estimate interval, each limiter computes its localarrival
rate and sends this value to other limiters via the communication
fabric. Each limiter sums the most recent values it has received for
the other limiters and removes tokens from its own bucket at this
“global” rate until a new update arrives. As shown in Section4,
however, GTB is highly sensitive to stale observations thatcon-
tinue to remove tokens at an outdated rate, making it impractical to
implement at large scale or in lossy networks.

3.2.1 Global random drop
Instead of emulating the precise behavior of a centralized token

bucket, we observe that one may instead emulate the higher-order
behavior of a central limiter. For example, we can ensure therate
of drops over some period of time is the same as in the centralized
case, as opposed to capturing the burstiness of packet drops—in
this way, we emulate the rate enforcement of a token bucket but not
its burst limiting. Figure 1 presents the pseudocode for a global ran-
dom drop (GRD) limiter that takes this approach. Like GTB, GRD
monitors the aggregate global input demand, but uses it to calculate
a packet drop probability. GRD drops packets with a probability



proportional to the excess global traffic demand in the previous in-
terval (line 4). Thus, the number of drops is expected to be the same
as in a single token bucket; the aggregate forwarding rate should be
no greater than the global limit.

GRD somewhat resembles RED queuing in that it increases its
drop probability as the input demand exceeds some threshold[14].
Because there are no queues in our limiter, however, GRD requires
no tuning parameters of its own (besides the estimator’s EWMA
and estimate interval length). In contrast to GTB, which attempts to
reproduce the packet-level behavior of a centralized limiter, GRD
tries to achieve accuracy by reproducing the number of losses over
longer periods of time. It does not, however, capture short-term
effects. For inherently bursty protocols like TCP, we can improve
short-term fairness and responsiveness by exploiting information
about the protocol’s congestion control behavior.

3.2.2 Flow proportional share
One of the key properties of a centralized token bucket is that

it retains inter-flow fairness inherent to transport protocols such
as TCP. Given the prevalence of TCP in the Internet, and espe-
cially in modern cloud-based services, we design a flow propor-
tional share (FPS) limiter that uses domain-specific knowledge
about TCP to emulate a centralized limiter without maintaining de-
tailed packet arrival rates. Each FPS limiter uses a token bucket
for rate limiting—thus, each limiter has alocal rate limit. Un-
like GTB, which renews tokens at the global rate, FPS dynami-
cally adjusts its local rate limit in proportion to a set of weights
computed every estimate interval. These weights are based upon
the number of live flows at each limiter and serve as a proxy for
demand; the weights are then used to enforce max-min fairness be-
tween congestion-responsive flows [6].

The primary challenge in FPS is estimating TCP demand. In the
previous designs, each rate limiter estimates demand by measuring
packets’ sizes and the rate at which it receives them; this accurately
reflects the byte-level demand of the traffic sources. In contrast,
FPS must determine demand in terms of the number of TCP flows
present, which is independent of arrival rate. Furthermore, since
TCP always attempts to increase its rate, a single flow consuming
all of a limiter’s rate is nearly indistinguishable from 10 flows doing
the same.2 However, we would like that a 10-flow aggregate receive
10 times the weight of a single flow.

Our approach to demand estimation in FPS is shown in Fig-
ure 2. Flow aggregates are in one of two states. If the aggregate
under-utilizes the allotted rate (local limit) at a limiter, then all con-
stituent flows must bebottlenecked. In other words, the flows are
all constrained elsewhere. On the other hand, if the aggregate ei-
ther meets or exceeds the local limit, we say that one or more of
the constituent flows isunbottlenecked—for these flows the lim-
iter is the bottleneck. We calculate flow weights with the function
FPS-ESTIMATE. If flows were max-min fair, then each unbottle-
necked flow would receive approximately the same rate. We there-
fore count a weight of 1 for every unbottlenecked flow at every
limiter. Thus, if all flows were unbottlenecked, then the demand at
each limiter is directly proportional to its current flow count. Set-
ting the local weight to this number results in max-min fair alloca-
tions. We use the computed weight on line 10 of FPS-ESTIMATE

to proportionally set the local rate limit.

2There is a slight difference between these scenarios: larger flow
aggregates have smaller demand oscillations when desynchro-
nized [4]. Since TCP is periodic, we considered distinguishing TCP
flow aggregates based upon the component frequencies in the ag-
gregate via the FFT. However, we found that the signal produced
by TCP demands is not sufficiently stationary.

FPS-ESTIMATE()

1 for each flow f in sample set
2 ESTIMATE(f )
3 localdemand← ri

4 if localdemand≥ locallimit then
5 maxflowrate← MAX RATE(sample set)
6 idealweight← locallimit / maxflowrate
7 else

8 remoteweights←
n

P

j 6=i

wj

9 idealweight← localdemand·remoteweights
limit−localdemand

10 locallimit← idealweight·limit
remoteweights+idealweight

11 PROPAGATE(idealweight)

FPS-HANDLE-PACKET(P : Packet)
1 if RAND() < resampleprobthen
2 add FLOW(P ) to sample set
3 TOKEN-BUCKET-L IMIT (P )

Figure 2: Pseudocode for FPS.wi corresponds to the weight
at each limiter i that represents the normalized flow count (as
opposed to ratesri as in GRD).

A seemingly natural approach to weight computation is to count
TCP flows at each limiter. However, flow counting fails to account
for the demands of TCP flows that are bottlenecked: 10 bottle-
necked flows that share a modem do not exert the same demands
upon a limiter as a single flow on an OC-3. Thus, FPS must com-
pute the equivalent number of unbottlenecked TCP flows that an
aggregate demand represents. Our primary insight is that wecan
use TCP itself to estimate demand: in an aggregate of TCP flows,
each flow will eventually converge to its fair-share transmission
rate. This approach leads to the first of two operating regimes:

Local arrival rate ≥ local rate limit. When there is at least one
unbottlenecked flow at the limiter, the aggregate input rateis equal
to (or slightly more than) the local rate limit. In this case,we
compute the weight by dividing the local rate limit by the sending
rate of an unbottlenecked flow, as shown on lines 5 and 6 of FPS-
ESTIMATE. Intuitively, this allows us to use a TCP flow’s knowl-
edge of congestion to determine the amount of competing demand.
In particular, if all the flows at the provider are unbottlenecked, this
yields a flow count without actual flow counting.

Thus, to compute the weight, a limiter must estimate an unbottle-
necked flow rate. We can avoid per-flow state by sampling packets
at a limiter and maintaining byte counters for a constant-size flow
set. We assume that the flow with the maximum sending rate is
unbottlenecked. However, it is possible that our sample setwill
contain only bottlenecked flows. Thus, we continuously resam-
ple and discard small flows from our set, thereby ensuring that the
sample set contains an unbottlenecked flow. It is likely thatwe will
select an unbottlenecked flow in the long run for two reasons.First,
since we uniformly sample packets, an unbottlenecked flow ismore
likely to be picked than a bottlenecked flow. Second, a sampleset
that contains only bottlenecked flows results in the weight being
overestimated, which increases the local rate limit, causes unbot-
tlenecked flows to grow, and makes them more likely to be chosen
subsequently.

To account for bottlenecked flows, FPS implicitly normalizes the
weight by scaling down the contribution of such flows proportional
to their sending rates. A bottlenecked flow only contributesa frac-
tion equal to its sending rate divided by that of an unbottlenecked
flow. For example, if a bottlenecked flow sends at 10 Kbps, and the



fair share of an unbottlenecked flow is 20 Kbps, the bottlenecked
flow counts for half the weight of an unbottlenecked flow.

Local arrival rate < local rate limit. When all flows at the limiter
are bottlenecked, there is no unbottlenecked flow whose ratecan be
used to compute the weight. Since the flow aggregate is unableto
use all the rate available at the limiter, we compute a weightthat,
based on current information, sets the local rate limit to beequal to
the local demand (line 9 of FPS-ESTIMATE).

A limiter may oscillate between the two regimes: entering the
second typically returns the system to the first, since the aggregate
may become unbottlenecked due to the change in local rate limit.
As a result, the local rate limit is increased during the nextalloca-
tion, and the cycle repeats. We note that this oscillation isnecessary
to allow bottlenecked flows to become unbottlenecked shouldad-
ditional capacity become available elsewhere in the network; like
the estimator, we apply an EWMA to smooth this oscillation. We
have proved that FPS is stable—given stable input demands, FPS
remains at the correct allocation of weights among limitersonce it
arrives in that state. (We include the proof in the Appendix.) It
remains an open question, however, whether FPS converges under
all conditions, and if so, how quickly.

Finally, TCP’s slow start behavior complicates demand estima-
tion. Consider the arrival of a flow at a limiter that has a current
rate limit of zero. Without buffering, the flow’s SYN will be lost
and the flow cannot establish its demand. Thus, we allow bursting
of the token bucket when the local rate limit is zero to allow aTCP
flow in slow start to send a few packets before losses occur. When
the allocator detects nonzero input demand, it treats the demand as
a bottlenecked flow for the first estimate interval. As a result, FPS
allocates rate to the flow equivalent to its instantaneous rate during
the beginning of slow start, thus allowing it to continue to grow.

4. EVALUATION METHODOLOGY
Our notion of a good distributed rate limiter is one that accurately

replicates centralized limiter behavior. Traffic policingmecha-
nisms can affect packets and flows on several time scales; partic-
ularly, we can aim to emulate packet-level behavior or flow-level
behavior. However, packet-level behavior is non-intuitive, since
applications typically operate at the flow level. Even in a single
limiter, any one measure of packet-level behavior fluctuates due to
randomness in the physical system, though transport-layerflows
may achieve the same relative fairness and throughput. Thisim-
plies a weaker, but tractable goal of functionally equivalent behav-
ior. To this end, we measure limiter performance using aggregate
metrics over real transport-layer protocols.

4.1 Metrics
We study three metrics to determine the fidelity of limiter de-

signs: utilization, flow fairness, and responsiveness. Thebasic goal
of a distributed rate limiter is to hold aggregate throughput across
all limiters below a specified global limit. To establish fidelity we
need to consider utilization over different time scales. Achievable
throughput in the centralized case depends critically on the traffic
mix. Different flow arrivals, durations, round trip times, and proto-
cols imply that aggregate throughput will vary on many time scales.
For example, TCP’s burstiness causes its instantaneous throughput
over small time scales to vary greatly. A limiter’s long-term be-
havior may yield equivalent aggregate throughput, but may burst
on short time scales. Note that, since our limiters do not queue
packets, some short-term excess is unavoidable to maintainlong-
term throughput. Particularly, we aim to achieve fairness equal to
or better than that of a centralized token bucket limiter.

Fairness describes the distribution of rate across flows. Weem-
ploy Jain’s fairness index to quantify the fairness across aflow
set [20]. The index considersk flows where the throughput of flow
i is xi. The fairness indexf is between 0 and 1, where 1 is com-
pletely fair (all flows share bandwidth equally):

f =

“

Pk

i=1
xi

”2

k
“

Pk

i=1
x2

i

”

We must be careful when using this metric to ascertain flow-level
fidelity. Consider a set of identical TCP flows traversing a single
limiter. Between runs, the fairness index will show considerable
variation; establishing the flow-level behavior for one or more lim-
iters requires us to measure the distribution of the index across mul-
tiple experiments. Additional care must be taken when measuring
Jain’s index across multiple limiters. Though the index approaches
1 as flows receive their fair share, skewed throughput distributions
can yield seemingly high indices. For example, consider 10 flows
where 9 achieve similar throughput while 1 gets nothing; this re-
sults in the seemingly high fairness index of 0.9. If we consider the
distribution of flows across limiters—the 9 flows go through one
limiter and the 1 flow through another—the fairness index does not
capture the poor behavior of the algorithm. Nevertheless, such a
metric is necessary to help establish the flow-level behavior of our
limiters, and therefore we use it as a standard measure of fairness
with the above caveat. We point out discrepancies when they arise.

4.2 Implementation
To perform rate limiting on real flows without proxying, we use

user-space queuing iniptables on Linux to capture full IP pack-
ets and pass them to the designated rate limiter without allowing
them to proceed through kernel packet processing. Each ratelimiter
either drops the packet or forwards it on to the destination through
a raw socket. We use similar, but more restricted functionality
for VNET raw sockets in PlanetLab to capture and transmit full
IP packets. Rate limiters communicate with each other via UDP.
Each gossip message sent over the communication fabric contains
a sequence number in addition to rate updates; the receivinglimiter
uses the sequence number to determine if an update is lost, and if
so, compensates by scaling the value and weight of the newestup-
date by the number of lost packets. Note that all of our experiments
rate limit traffic in one direction; limiters forward returning TCP
ACKs irrespective of any rate limits.

4.3 Evaluation framework
We evaluate our limiters primarily on a local-area emulation

testbed using ModelNet [35], which we use only to emulate link
latencies. A ModelNet emulation tests real, deployable proto-
types over unmodified, commodity operating systems and network
stacks, while providing a level of repeatability unachievable in an
Internet experiment. Running our experiments in a controlled en-
vironment helps us gain intuition, ensures that transient network
congestion, failures, and unknown intermediate bottleneck links do
not confuse our results, and allows direct comparison across exper-
iments. We run the rate limiters, traffic sources, and trafficsinks on
separate endpoints in our ModelNet network topology. All source,
sink, and rate limiter machines run Linux 2.6.9. TCP sourcesuse
New Reno with SACK enabled. We use a simple mesh topology
to connect limiters and route each source and sink pair through a
single limiter. The virtual topology connects all nodes using 100-
Mbps links.
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Figure 3: Time series of forwarding rate for a centralized limiter and our three limiting algorithms in the baseline experiment—3
TCP flows traverse limiter 1 and 7 TCP flows traverse limiter 2.
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Figure 4: Delivered forwarding rate for the aggregate at different time scales—each row represents one run of the baseline experi-
ment across two limiters with the “instantaneous” forwarding rate computed over the stated time period.

5. EVALUATION
Our evaluation has two goals. The first is to establish the ability

of our algorithms to reproduce the behavior of a single limiter in
meeting the global limit and delivering flow-level fairness. These
experiments use only 2 limiters and a set of homogeneous TCP
flows. Next we relax this idealized workload to establish fidelity in
more realistic settings. These experiments help achieve our second
goal: to determine the effective operating regimes for eachdesign.
For each system we consider responsiveness, performance across
various traffic compositions, and scaling, and vary the distribution
of flows across limiters, flow start times, protocol mix, and traffic
characteristics. Finally, as a proof of concept, we deploy our lim-
iters across PlanetLab to control a mock-up of a simple cloud-based
service.

5.1 Baseline
The baseline experiment consists of two limiters configuredto

enforce a 10-Mbps global limit. We load the limiters with 10 un-
bottlenecked TCP flows; 3 flows arrive at one limiter while 7 ar-
rive at the other. We choose a 3-to-7 flow skew to avoid scenarios
that would result in apparent fairness even if the algorithmfails.
The reference point is a centralized token-bucket limiter (CTB)
servicing all 10 flows. We fix flow and inter-limiter round trip
times (RTTs) to 40 ms, and token bucket depth to 75,000 bytes—
slightly greater than the bandwidth-delay product, and, for now,
use a loss-free communication fabric. Each experiment lasts 60

seconds (enough time for TCP to stabilize), the estimate interval
is 50 ms, and the 1-second EWMA parameter is 0.1; we consider
alternative values in the next section.

Figure 3 plots the packet forwarding rate at each limiter as well
as the achieved throughput of the flow aggregate. In all cases, the
aggregate utilization is approximately 10 Mbps. We look at smaller
time scales to determine the extent to which the limit is enforced.
Figure 4 shows histograms of delivered “instantaneous” forward-
ing rates computed over two different time periods, thus showing
whether a limiter is bursty or consistent in its limiting. All de-
signs deliver the global limit over 1-second intervals; both GTB
and GRD, however, are bursty in the short term. By contrast, FPS
closely matches the rates of CTB at both time scales. We believe
this is because FPS uses a token bucket to enforce local limits. It
appears that when enforcing the same aggregate limit, the forward-
ing rate of multiple token buckets approximates that of a single
token bucket even at short time scales.

Returning to Figure 3, the aggregate forwarding rate shouldbe
apportioned between limiters in about a 3-to-7 split. GTB clearly
fails to deliver in this regard, but both GRD and FPS appear ap-
proximately correct upon visual inspection. We use Jain’s fairness
index to quantify the fairness of the allocation. For each run of
an experiment, we compute one fairness value across all flows, ir-
respective of the limiter at which they arrive. Repeating this ex-
periment 10 times yields a distribution of fairness values.We use
quantile-quantile plots to compare the fairness distribution of each



 0

 2500

 5000

 7500

 10000

 12500

 15000

 0  5  10  15  20  25  30  35  40  45  50  55  60  65  70  75  80  85  90  95  100

R
at

e 
(K

bp
s)

Time (sec)

Aggregate departures
Flow 1 departures
Flow 2 departures
Flow 3 departures
Flow 4 departures
Flow 5 departures

(a) Central token bucket

 0

 2500

 5000

 7500

 10000

 12500

 15000

 0  5  10  15  20  25  30  35  40  45  50  55  60  65  70  75  80  85  90  95  100

R
at

e 
(K

bp
s)

Time (sec)

Aggregate departures
Limiter 1 departures
Limiter 2 departures
Limiter 3 departures
Limiter 4 departures
Limiter 5 departures

(b) Global random drop with 500-ms estimate interval
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(c) Global random drop with 50-ms estimate interval
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Figure 6: Time series of forwarding rate for a flow join experiment. Every 10 seconds, a flow joins at an unused limiter.

limiter to the centralized token bucket (CTB). Recall that an im-
portant benchmark of our designs is their ability to reproduce a
distribution of flow fairness at least as good as that of CTB. If they
do, their points will closely follow thex = y line; points below the
line are less fair, indicating poor limiter behavior and points above
the line indicate that the rate limiting algorithm producedbetter
fairness than CTB.

Figure 5 compares distributions for all algorithms in our base-
line experiment. GTB has fairness values around 0.7, which corre-
sponds to the 7-flow aggregate unfairly dominating the 3-flowag-
gregate. This behavior is clearly visible in Figure 3(b), where the
7-flow limiter receives almost all the bandwidth. GRD and FPS,
on the other hand, exhibit distributions that are at or abovethat of
CTB. GRD, in fact, has a fairness index close to 1.0—much bet-
ter than CTB. We verify this counter-intuitive result by comparing
the performance of CTB with that of a single GRD limiter (labeled
“Central Random Drop” in the figure). It is not surprising, then,

that FPS is less fair than GRD, since it uses a token bucket at each
limiter to enforce the local rate limit.3

Additionally, with homogeneous flows across a wide range of
parameters—estimate intervals from 10 ms to 500 ms and EWMA
from 0 to 0.75—we find that GTB and GRD are sensitive to esti-
mate intervals, as they attempt to track packet-level behaviors (we
omit the details for space). In general, GTB exhibits poor fairness
for almost all choices of EWMA and estimate interval, and per-
forms well only when the estimate interval is small and the EWMA
is set to 0 (no filter). We conjecture that GTB needs to sample the
short-term behavior of TCP in congestion avoidance, since consid-
ering solely aggregate demand over long time intervals fails to cap-
ture the increased aggressiveness of a larger flow aggregate. We

3In future work, we plan to experiment with a local GRD-like ran-
dom drop mechanism instead of a token bucket in FPS; this will
improve the fairness of FPS in many scenarios.
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verified that GTB provides better fairness if we lengthen TCP’s
periodic behavior by growing its RTT. Since all results showthat
GTB fails with anything but the smallest estimate interval,we do
not consider it further.

GRD is sensitive to the estimate interval, but in terms of short-
term utilization, not flow fairness, since it maintains the same drop
probability until it receives new updates. Thus, it occasionally
drops at a higher-than-desired rate, causing congestion-responsive
flows to back off significantly. While its long-term fairnessremains
high even for 500-ms estimate intervals, short-term utilization be-
comes exceedingly poor. By contrast, for homogeneous flows,FPS
appears insensitive to the estimate interval, since flow-level demand
is constant. Both GRD and FPS require an EWMA to smooth input
demand to avoid over-reacting to short-term burstiness.4

5.2 Flow dynamics
We now investigate responsiveness (time to convergence andsta-

bility) by observing the system as flows arrive and depart. We
sequentially add flows to a system of 5 limiters and observe the
convergence to fair share of each flow. Figure 6(a) shows the ref-
erence time-series behavior for a centralized token bucket. Note
that even through a single token bucket, the system is not com-
pletely fair or stable as flows arrive or depart due to TCP’s bursti-
ness. With a 500-ms estimate interval, GRD (Figure 6(b)) fails
to capture the behavior of the central token bucket. Only with an
order-of-magnitude smaller estimate interval (Figure 6(c)) is GRD
able to approximate the central token bucket, albeit with increased
fairness. FPS (Figure 6(d)), on the other hand, exhibits theleast
amount of variation in forwarded rate even with a 500-ms estimate
interval, since flow-level demand is sufficiently constant over half-
second intervals. This experiment illustrates that the behavior GRD
must observe occurs at a packet-level time scale: large estimate in-
tervals cause GRD to lose track of the global demand, resulting in
chaotic packet drops. FPS, on the other hand, only requires updates
as flows arrive, depart, or change their behavior.

4Though neither are particularly sensitive to EWMA, we empiri-
cally determined that a reasonable setting of the 1-second EWMA
is 0.1. We use this value unless otherwise noted.

CTB GRD FPS
Goodput (bulk mean) 6900.90 7257.87 6989.76

(stddev) 125.45 75.87 219.55
Goodput (web mean) 1796.06 1974.35 2090.25

(stddev) 104.32 93.90 57.98
Web rate (h-mean) [0,5000) 28.17 25.84 25.71

[5000, 50000) 276.18 342.96 335.80
[50000, 500000) 472.09 612.08 571.40

[500000,∞) 695.40 751.98 765.26
Fairness (bulk mean) 0.971 0.997 0.962

Table 1: Goodput and delivered rates (Kbps), and fairness for
bulk flows over 10 runs of the Web flow experiment. We use
mean values for goodput across experiments and use the har-
monic mean of rates (Kbps) delivered to Web flows of size (in
bytes) within the specified ranges.

5.3 Traffic distributions
While TCP dominates cloud-based service traffic, the flows

themselves are far from regular in their size, distribution, and du-
ration. Here we evaluate the effects of varying traffic demands
by considering Web requests that contend with long-runningTCP
flows for limiter bandwidth. To see whether our rate limitingal-
gorithms can detect and react to Web-service demand, we assign
10 long-lived (bulk) flows to one limiter and the service requests to
the other; this represents the effective worst-case for DRLsince
short and long flows cannot exert ordinary congestive pressures
upon each other when isolated. We are interested in the ability
of both traffic pools to attain the correct aggregate utilization, the
long-term fairness of the stable flows, and the service ratesfor the
Web flows.

Since we do not have access to traffic traces from deployed
cloud-based services, we use a prior technique to derive a distri-
bution of Web object sizes from a CAIDA Web trace for a high-
speed OC-48 MFN (Metropolitan Fiber Network) Backbone 1 link
(San Jose to Seattle) that follows a heavy-tailed distribution [36].
We fetch objects in parallel from an Apache Web server using
httperf via a limiter. We distribute requests uniformly over ob-
jects in the trace distribution. Requests arrive accordingto a Pois-
son process with averageµ of 15.

Table 1 gives the delivered rates for the Web flows of different
sizes and the delivered rates for the 10-flow aggregates in each
scenario across 10 runs. This shows that the 10-flow aggregate
achieved a comparable allocation in each scenario. When seen in
conjunction with the Web download service rates, it also indicates
that the Web traffic aggregate in the other limiter received the cor-
rect allocation. Considering the Web flow service rates alone, we
see that both GRD and FPS exhibit service rates close to that of a
single token bucket, even for flows of significantly different sizes.
The fairness index of the long-lived flows once again shows that
GRD exhibits higher fairness than either CTB or FPS. FPS does
not benefit from the fact that it samples flow-level behavior,which,
in this context, is no more stable than the packet-level behavior ob-
served by GRD.

5.4 Bottlenecked TCP flows
So far, the limiters represent the bottleneck link for each TCP

flow. Here we demonstrate the ability of FPS to correctly allocate
rate across aggregates of bottlenecked and unbottleneckedflows.
The experiment in Figure 7 begins as our baseline 3-to-7 flow skew
experiment where 2 limiters enforce a 10 Mbps limit. Around 15
seconds, the 7-flow aggregate experiences an upstream 2-Mbps bot-
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Figure 7: FPS rate limiting correctly adjusting to the arriv al of bottlenecked flows.

CTB GRD FPS
Aggregate (Mbps) 10.57 10.63 10.43
Short RTT (Mbps) 1.41 1.35 0.92

(stddev) 0.16 0.71 0.15
Long RTT (Mbps) 0.10 0.16 0.57

(stddev) 0.01 0.03 0.05

Table 2: Average throughput for 7 short (10-ms RTT) flows and
3 long (100 ms) RTT flows distributed across 2 limiters.

tleneck, and FPS quickly re-apportions the remaining 8 Mbpsof
rate across the 3 flows at limiter 1. Then, at time 31, a single un-
bottlenecked flow arrives at limiter 2. FPS realizes that an unbottle-
necked flow exists at limiter 2, and increases the allocationfor the
(7+1)-flow aggregate. In a single pipe, the 4 unbottleneckedflows
would now share the remaining 8 Mbps. Thus, limiter 2 should
get 40% of the global limit, 2 Mbps from the 7 bottlenecked flows,
and 2 Mbps from the single unbottlenecked flow. By time 39, FPS
apportions the rate in this ratio.

5.5 Mixed TCP flow round-trip times
TCP is known to be unfair to long-RTT flows. In particular,

short-RTT flows tend to dominate flows with longer RTTs when
competing at the same bottleneck, as their tighter control loops al-
low them to more quickly increase their transmission rates.FPS, on
the other hand, makes no attempt to model this bias. Thus, when
the distribution of flow RTTs across limiters is highly skewed, one
might be concerned that limiters with short-RTT flows would ar-
tificially throttle them to the rate achieved by longer-RTT flows at
other limiters. We conduct a slight variant of the baseline exper-
iment, with two limiters and a 3-to-7 flow split. In this instance,
however, all 7 flows traversing limiter 2 are “short” (10-ms RTT),
and the 3 flows traversing limiter 1 are “long” (100-ms RTT), rep-
resenting a worst-case scenario. Table 2 shows the aggregate de-
livered throughput, as well as the average throughput for short and
long-RTT flows for the different allocators. As expected, FPS pro-
vides a higher degree of fairness between RTTs, but all threelim-
iters deliver equivalent aggregate rates.

5.6 Scaling
We explore scalability along two primary dimensions: the num-

ber of flows, and the number of limiters. First we consider a 2-
limiter setup similar to the baseline experiment, but with aglobal
rate limit of 50 Mbps. We send 5000 flows to the two limiters in
a 3-7 ratio: 1500 flows to the first and 3500 to the second. GRD
and FPS produce utilization of 53 and 46 Mbps and flow fairness
of 0.44 and 0.33 respectively. This is roughly equal to that of a
single token bucket with 5000 flows (which yielded 51 Mbps and
0.34). This poor fairness is not surprising, as each flow has only 10
Kbps, and prior work has shown that TCP is unfair under such con-

ditions [28]. Nevertheless, our limiters continue to perform well
with many flows.

Next, we investigate rate limiting with a large number of limiters
and different inter-limiter communication budgets, in an environ-
ment in which gossip updates can be lost. We consider a topology
with up to 490 limiters; our testbed contains 7 physical machines
with 70 limiters each. Flows travel from the source through differ-
ent limiter nodes, which then forward the traffic to the sink.(We
consider TCP flows here and use symmetric paths for the forward
and reverse directions of a flow.) We set the global rate limitto
50 Mbps and the inter-limiter and source-sink RTTs to 40 ms. Our
experiment setup has the number of flows arriving at each limiter
chosen uniformly at random from 0 to 5. For experiments with the
same number of limiters, the distribution and number of flowsis
the same. We start 1 random flow from the above distribution every
100 ms; each flow lives for 60 seconds.

To explore the effect of communication budget, we vary the
branching factor (br) of the gossip protocol from 1 to 7; for a
given value, each extra limiter incurs a fixed communicationcost.
Figure 8 shows the behavior of FPS in this scaling experiment.
At its extreme there are 1249 flows traversing 490 limiters. (We
stop at 490 not due to a limitation of FPS, but due to a lack of
testbed resources.) Whenbr = 3, each extra limiter consumes
48 × 20 × 3 = 2.88 Kbps. Thus, at 490 limiters, the entire
system consumes a total of 1.4 Mbps of bandwidth for control
communication—less than 3% overhead relative to the globallimit.

We find that beyond a branching factor of 3, there is little benefit
either in fairness or utilization. Indeed, extremely high branching
factors lead to message and ultimately information loss. Beyond 50
limiters, GRD fails to limit the aggregate rate (not shown),but this
is not assuaged by an increasing communication budget (increasing
br). Instead it indicates GRD’s dependence on swiftly converging
global arrival rate estimates. In contrast, FPS, because itdepends
on more slowly moving estimates of the number of flows at each
limiter, maintains the limit even at 490 limiters.

This experiment shows that limiters rely upon up-to-date sum-
maries of global information, and these summaries may become
stale when delayed or dropped by the network. In particular,our
concern lies with stale under-estimates that cause the system to
overshoot the global rate; a completely disconnected system—due
to either congestion, failure, or attack—could over-subscribe the
global limit by a factor ofN . We can avoid these scenarios by ini-
tializing limiters with the number of peers,N , and running a light-
weight membership protocol [24] to monitor the current number
of connected peers. For each disconnected peer, the limitercan re-
duce the global limit by1

N
, and set each stale estimate to zero. This

conservative policy drives the limiters toward a1
N

limiter (where
each limiter enforces an equal fraction of the global aggregate) as
disconnections occur. More generally, though, we defer analysis of
DRL under adversarial or Byzantine conditions to future work.
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Figure 8: Fairness and delivered rate vs. number of limitersin the scaling experiment.

5.7 Limiting cloud-based services
Finally, we subject FPS to inter-limiter delays, losses, and TCP

arrivals and flow lengths similar to those experienced by a cloud-
based service. As in Section 5.3, we are not concerned with the
actual service being provided by the cloud or its computational
load—we are only interested in its traffic demands. Hence, we
emulate a cloud-based service by using generic Web requestsas
a stand-in for actual service calls. We co-locate distributed rate
limiters with 10 PlanetLab nodes distributed across North America
configured to act as component servers. Without loss of generality,
we focus on limiting only out-bound traffic from the servers;we
could just as easily limit in-bound traffic as well, but that would
complicate our experimental infrastructure. Each PlanetLab node
runs Apache and serves a series of Web objects; an off-test-bed
client machine generates requests for these objects usingwget.
The rate limiters enforce an aggregate global rate limit of 5Mbps
on the response traffic using a 100-ms estimate interval and agos-
sip branching factor of 4, resulting in a total control bandwidth of
38.4 Kbps. The inter-limiter control traffic experienced 0.47% loss
during the course of the experiment.

Figure 9 shows the resulting time-series plot. Initially each con-
tent server has demands to serve 3 requests simultaneously for 30
seconds, and then the total system load shifts to focus on only 4
servers for 30 seconds, emulating a change in the service’s request
load, perhaps due to a phase transition in the service, or a flash
crowd of user demand. Figure 9(a) shows the base case, where a
static 1

N
limiting policy cannot take advantage of unused capacity

at the other 6 sites. In contrast, FPS, while occasionally bursting
above the limit, accommodates the demand swing and deliversthe
full rate limit.

6. RELATED WORK
The problem of online, distributed resource allocation is not a

new one, but to our knowledge we are the first to present a concrete
realization of distributed traffic rate limiting. While there has been
considerable work to determine the optimal allocation of band-
width between end-point pairs in virtual private networks (VPNs),
the goal is fundamentally different. In the VPN hose model [23],
the challenge is to meet various quality-of-service guarantees by
provisioning links in the network to support any traffic distribution
that does not exceed the bandwidth guarantees at each end point
in the VPN. Conversely, the distributed rate limiting problem is
to control the aggregate bandwidth utilization at all limiters in the

network, regardless of the available capacity at the ingress or egress
points.

Distributed rate limiting can be viewed as a continuous formof
distributed admission control. Distributed admission control allows
participants to test for and acquire capacity across a set ofnetwork
paths [21, 40]; each edge router performs flow-admission tests to
ensure that no shared hop is over-committed. While our limiters
similarly “admit” traffic until the virtual limiter has reached capac-
ity, they do so in an instantaneous, reservation-free fashion.

Ensuring fairness across limiters can be viewed as a distributed
instance of the link-sharing problem [15]. A number of packet
scheduling techniques have been developed to enforce link-sharing
policies, which provide bandwidth guarantees for different classes
of traffic sharing a single link. These techniques, such as weighted
fair queuing [11], apportion link capacity among traffic classes
according to some fixed weights. These approaches differ from
ours in two key respects. First, by approximating generalized pro-
cessor sharing [31], they allocate excess bandwidth acrossback-
logged classes in a max-min fair manner; we avoid enforcing any
explicit type of fairness between limiters, though FPS tries to en-
sure max-min fairness between flows. Second, most class-based
fair-queuing schemes aim to provide isolation between packets of
different classes. In contrast, we expose traffic at each limiter to all
other traffic in the system, preserving whatever implicit notion of
fairness would have existed in the single-limiter case. As discussed
in Section 3, we use a token bucket to define the reference behavior
of a single limiter. There are a broad range of active queue manage-
ment schemes that could serve equally well as a centralized refer-
ence [13, 14]. Determining whether similar distributed versions of
these sophisticated AQM schemes exist is a subject of futurework.

The general problem of using and efficiently computing aggre-
gates across a distributed set of nodes has been studied in a number
of other contexts. These include distributed monitoring [12], trig-
gering [19], counting [33, 38], and data stream querying [5,26].
Two systems in particular also estimate aggregate demand toap-
portion shared resources at multiple points in a network. The first
is a token-based admission architecture that considers theproblem
of parallel flow admissions across edge routers [7]. Their goal is to
divide the total capacity fairly across allocations at edgerouters by
setting an edge router’s local allocation quota in proportion to its
share of the request load. However they must revert to a first-come
first-served allocation model if ever forced to “revoke” bandwidth
to maintain the right shares. Zhaoet al. use a similar protocol to
enforce service level agreements between server clusters [41]. A
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Figure 9: A time-series graph rate limiting at 10 PlanetLab sites across North America. Each site is a Web server, frontedby a
rate limiter. Every 30 seconds total demand shifts to four servers and then back to all 10 nodes. The top line represents aggregate
throughput; other lines represent the served rates at each limiter.

set of layer-7 switches employ a “coordinated” request queuing al-
gorithm to distribute service requests in proportion to theaggregate
sum of switch queue lengths.

7. CONCLUSION
As cloud-based services transition from marketing vaporware to

real, deployed systems, the demands on traditional Web-hosting
and Internet service providers are likely to shift dramatically. In
particular, current models of resource provisioning and account-
ing lack the flexibility to effectively support the dynamic compo-
sition and rapidly shifting load enabled by the software as aser-
vice paradigm. We have identified one key aspect of this problem,
namely the need to rate limit network traffic in a distributedfashion,
and provided two novel algorithms to address this pressing need.

Our experiments show that naive implementations based on
packet arrival information are unable to deliver adequate levels of
fairness, and, furthermore, are unable to cope with the latency and
loss present in the wide area. We presented the design and im-
plementation of two limiters, a protocol-agnostic global random
drop algorithm and a flow proportional share algorithm appropri-
ate for deployment in TCP-based Web-services environmentsthat
is robust to long delays and lossy inter-limiter communication. By
translating local arrival rate into a flow weight, FPS communicates
a unit of demand that is inherently more stable than packet arrivals.
Thus, it is possible for the local arrival rates to fluctuate,but for the
flow weight to remain unchanged.

Our results demonstrate that it is possible to recreate, at dis-
tributed points in the network, the flow behavior that end users
and network operators expect from a single centralized ratelim-
iter. Moreover, it is possible to leverage knowledge of TCP’s con-
gestion avoidance algorithm to do so using little bandwidth, hun-
dreds of limiters, thousands of flows, and realistic Internet delays
and losses. While our experience with GRD indicates it may be
difficult to develop a robust protocol-agnostic limiter, itis likely

that UDP-based protocols deployed in a cloud will have theirown
congestion-control algorithms. Hence, FPS could be extended to
calculate a flow weight for these as well.
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APPENDIX
Here we show that FPS correctly stabilizes to the “correct” alloca-
tions at all limiters in the presence of both unbottleneckedand bot-
tlenecked flows. First, we present a model of TCP estimation over
n limiters. Let a1, a2, . . . , an be the number of unbottlenecked
flows at limiters 1 ton respectively. Similarly, letB1, B2, . . . , Bn

be the local bottlenecked flow rates (which may include multiple
flows). At theith limiter, there exists a local rate limit,li. These
limits are subject to the constraint thatl1 + l2 + · · · + ln = L,
whereL is the global rate limit. LetU = L −

P

i
Bi represent

the total amount of rate available for unbottlenecked flows.Let
A =

P

i
ai represent the total number of unbottlenecked flows

across all limiters. Given these values, a TCP estimator outputs
a tuple of weights(w1, w2, . . . , wn) that are used by FPS to as-
sign rate limits at all limiters. Suppose we are given perfect global
knowledge and are tasked to compute the correct allocationsat all
limiters. The allocation would be

I = (U ·
a1

A
+ B1, U ·

a2

A
+ B2, . . . , U ·

an

A
+ Bn).

Note that these weights are also equal to the actual rate limits as-
signed at each node. This corresponds to an allocation whichwould
result for each limiter’s flow aggregate had all flows (globally) been
forced through a single pipe of capacityL.

FPS first estimates the rate of a single unbottlenecked flow at
each limiter. Once stabilized, such a flow at limiter numberi will
receive a ratef (whereli is thecurrent rate limit at limiteri):

f =
li − Bi

ai

.

Given these flow rates, FPS will compute a new weightwi at each
limiter:

wi =
li · ai

li − Bi

.

Once FPS arrives at the ideal allocation, it will remain at the ideal
allocation in the absence of any demand changes. That is, suppose
(l1, . . . , ln) = (I1, . . . , In). We claim that the newly computed
weights(w1, . . . , wn) result in the same allocation; equivalently,

w1

w1 + · · · + wn

=
I1

I1 + · · · + In

.

The weights computed given this starting state are, for eachi,

wi =
(U ·

ai

A
+ Bi) · ai

(U ·
ai

A
+ Bi) − Bi

.

Thus, considering the allocation at limiter 1,

w1

w1 + · · · + wn

=
Ua1+AB1

U
Ua1+AB1

U
+ · · · + Uan+ABn

U

,

which is equal to

Ua1 + AB1

Ua1 + AB1 + · · · + Uan + ABn

=
I1

I1 + · · · + In

,

the ideal allocation fraction for limiter 1. The allocations at other
limiters are analogous.


