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Abstract— NFV and SDN enable flexibility and programmabil-
ity at the data plane. In addition, offloading packet processing to a
hardware saves processing resources to compute other workloads.
However, fulfilling requirements such as high throughput and
low latency with a flexible and programmable data plane is
challenging. This paper introduces eBPFlow, a platform for
seamlessly accelerating network computation. It builds upon
eBPF. eBPFlow combines flexibility and programmability in
software with high performance using an FPGA. We implemented
our system on the NetFPGA SUME, performing tests on a
physical testbed. We built a range of NFs. Our results show that
the eBPFlow supports offloading of NFs with throughput at the
line rate, latency between 20 µs and 40 µs, communication with
host, and consumption of 22 W. Moreover, eBPFlow processes
12.05 Mpps more than the kernel. eBPFlow has a throughput of
2.59 Gbps higher than the hXDP, a system similar to eBPFlow.

Index Terms— Networking functions virtualization, pro-
grammable data plane, eBPF, NetFPGA.

I. INTRODUCTION

NETWORK Function Virtualization (NFV) and Software-
Defined Networking (SDN) provide flexibility and

programmability on the network data plane. Combining these
technologies improves manageability, reliability, and agility,
enabling network operators to adapt to both upgrades and
service demands. However, NFVs processing typically occurs
in software on virtual machines or containers of commodity
servers. Such software dataplanes, while much faster today
than a decade ago, struggle to support today’s traffic demands.

Numerous recent studies have aimed to mitigate the poor
performance of software, while retaining their flexibility,
by offloading network functions (NFs) to hardware accel-
erators such as programmable switches and SmartNICs [1].
NFs can be partially or entirely offloaded and acceler-
ated. Programmable data planes provide programmability and
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flexibility to implement different tasks on network devices,
enabling adaptability for new headers and protocols. Also, they
support NF offloading, improving processing performance.
However, each offload platform brings with it major limitations
on generality (e.g., P4 can only support a narrow range of types
of NF) and expressiveness. Thus to date most efforts have
focused on bespoke implementations for a specific offload plat-
form rather than developing a fast, general-purpose approach
to NF offload [2], [3].

Moreover, there are challenges in programming FPGA for
NF, such as:

Programmability and flexibility: FPGAs are hardware
platforms that combine flexibility in software with high pro-
cessing power. Due to these features, FPGAs are attractive
platforms to accelerate packet processing and offload NFs.
Moreover, they are reprogrammable with power efficiency.
On the other hand, hardware programming occurs through
low-level hardware description languages (HDLs) such as
Verilog and VHDL, which do not offer high productivity
rates [4].

Achieve high-performance: Hardware to offload NFs and
accelerate packet processing must support many stateless and
stateful functions (e.g., tunneling, forwarding, traffic shaping,
monitoring, access control list (ACL), firewall, and DDoS pro-
tection) with a throughput of 40-200 Gbps. Moreover, it should
minimize processing overheads and performance bottlenecks.
All these points directly affect the hardware performance and
quality of services.

To address these challenges, we propose eBPFlow, a plat-
form that supports offloading NFs using the standard, general-
purpose eBPF (extended Berkeley Packet Filter) instruction
set [5] already used widely in the Linux kernel. eBPF specifies
a bytecode machine and an instruction set that we leverage to
program general-purpose NFs on the data plane. eBPFlow is a
platform for seamlessly accelerating network computation to
deploy building upon eBPF. Moreover, it combines flexibility
and programmability in software with high performance in
hardware using an FPGA (Field Programmable Gate Array).

Furthermore, eBPFlow is protocol-independent, allowing
the utilization of new dynamically defined fields and protocols
without recompiling or restarting the device when the user
changes the packet processing algorithm on the data plane at
runtime. eBPFlow supports all network hardware requirements
to offload and accelerate NFs, such as similar integration,
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performance, programmability, flexibility, lookup and pattern
matching, forwarding, traffic shaping and control, serviceabil-
ity, and data manipulation. eBPFlow runs on the NetFPGA
SUME 40 Gbps platform [6]. The tests were performed in a
physical testbed, demonstrating the eBPFlow performance to
offload stateless and stateful NFs and accelerate processing.
We present the feasibility of building NFs such as LPM
forwarding, Stateful firewall, DDoS mitigation, and Deep
Packet Inspection (DPI).

The main contributions of this work are the following.
First, offloading network functions and accelerating packet
processing by leveraging eBPF and integrating existing eBPF
environments and projects. Second, eBPFlow allows users with
little hardware expertise to develop functions that operate on
packet headers and payload, L2-L7 layers of the network
stack with high throughput and low latency. Third, logic
design and hardware implementation of eBPFlow, built on
top of the NetFPGA SUME [6] with three parallelism types:
instructions parallelism with a multi-core hardware design
containing 5-stages pipeline; parallelism per port through a
cores group reserved per port; and parallelism on the packet
forwarding through an output crossbar coupled on the data
path. Finally, eBPFlow enables the programming of stateful
and stateless NFs and the use of dynamically defined new
fields and protocols at runtime.

This brief history of recent programmable data planes illus-
trates the industry’s trend of adopting eBPF. Pacifico et al. [7]
proposed a simplified version of the eBPFlow on NetFPGA
SUME. In this version, the system contains four eBPF engines
shared between all the ports. Each eBPF engine has a pipeline
with 5-stages, providing parallelism of instructions. However,
this system does not support parallelism in forwarding packets
and per-port with a number of exclusive cores, harming the
system’s performance due to lost packets and processing over-
head. Here, we extended this work by providing new types of
parallelism (per port and forwarding of packets), increasing the
number of eBPF cores, and adding an output crossbar. We have
also realized new experiments to evaluate and compare the sys-
tem with similar systems. Netronome [8] provides a SmartNIC
that includes programming capabilities with eBPF instructions,
showing the trend towards programmable data planes with
eBPF. But, to program the SmartNIC, the code has to pass
a verifier that disables back-edge jump (e.g., for, while loops),
so the SmartNIC can not execute NFs that compute on the
packet payload (e.g., DPI). Moreover, Netronome is firmware
and kernel-dependent, making it challenging to manage the
network; it has a very low port density (only 2 ports); it
does not provide specific hardware modules, such as CAM or
TCAM to handle stateful NFs. Finally, hXDP executes XDP
code in hardware. Besides eBPF ISA, hXDP also provides
new instructions. But, it does not support offloading of NFs
in runtime. The eBPFlow is compatible with the eBPF stan-
dard [9]. Moreover, it presents more return codes of the design
in hardware. This does not harm the compatibility with other
eBPF systems.

The remainder of this paper is organized as follows. In §II,
we introduce an overview for understanding the eBPFlow.
In §III, we describe the eBPFlow design. In §IV, we present

the implementation details of eBPFlow built on top of the
NetFPGA SUME platform. In §V, we describe the network
functions evaluated on our system. In §VI, we show the
evaluation and results in a realistic environment. In §VII,
we describe and compare the related work. Finally, in §VIII,
we present the conclusion.

II. OVERVIEW

This section presents an overview for understanding the
eBPFlow.

A. eBPF

eBPF is a general-purpose soft 64-bit processor available on
Linux kernel since version 3.15. It allows fast processing of
packets at runtime inside the kernel and provides programma-
bility and flexibility on packet computing. Users can compile
eBPF programs to bytecode before loading it on the kernel.
Languages such as C and P4 support this technology. More
details about eBPF are available in [5], a complete course.
High-level languages are used to write code to the data plane
and compile it into the eBPF instruction set. Since version 3.7,
the LLVM compiler collection has a backend for the eBPF
platform, allowing programming in this subset of C and
generating executable code in eBPF format. Many projects use
eBPF, e.g., Facebook built a layer 4 load balancing forwarding
plane using eBPF to provide fast packet processing in-kernel.
Moreover, problems such as interdependence, distribution, and
heterogeneous hardware can be solved due to the features and
environments available in this technology.

B. NetFPGA

The NetFPGA project [10] is an open-source project that
leverages research and development of new networking appli-
cations using a SmartNIC based on FPGA. It provides a
platform composed of software and hardware. All platforms’
infrastructure aims to simplify development tasks such as
design, simulation, and testing of high-speed networking
applications in hardware. The NetFPGA’s development envi-
ronment allows the creation of new designs reusing the
base code of reference projects (e.g., NIC, Switch, and
IPv4 Router). In addition, it has support from a broad
research community. We chose the NetFPGA to demonstrate
the system due to the platform’s benefits. Moreover, the
NetFPGA platform allows bypass challenges of the system’s
design, creating new circuits to provide parallelism and using
the resources available in the platform, such as IP cores,
FIFOs, and memories, to optimize the performance of the
system.

III. EBPFLOW DESIGN

Figure 1 gives an overview of the eBPFlow’s design and
implementation built on top of the NetFPGA SUME [6]
platform. The system has two components: data plane and
userspace tools.

The data plane contains sixteen processing cores divided
into groups composed of four eBPF engines, with each group
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Fig. 1. eBPFlow design.

responsible for packet processing and forwarding for each RX
and TX queue. We chose the number of eBPF engines (four)
per group based on the design’s consumed resource (logic
cells) and the maximum frequency obtained after the synthesis.
All groups share an instruction memory, a timer, a coprocessor,
and an output crossbar. The instruction memory includes a
system with a double buffer that changes programs without
stopping the processing. The timer allows measurement of
network performance (for example, through EWMA, latency,
and jitter) when storing the timestamp of packets on metadata.
The coprocessor works as eBPF maps in hardware using
TCAM/CAM memories to store pairs <key, value>. The out-
put crossbar provides parallelism in the forwarding of packets,
improving the throughput and latency of the system. Moreover,
each group has one demux and output arbiter reserved per RX
and TX queue, which allows the system to receive and send
packets exchanging cores in runtime. We divided the eBPF
engines into groups by queue to provide per-port parallelism
on packet processing. Moreover, we added an output crossbar
to receive the processed packets per each group to all output
queues, providing parallelism on forwarding.

On eBPFlow, four parallel engines per port can cause
packet reordering in a single flow. We do not treat the packet
reordering on the system, leaving the TCP protocol responsible
for this task because it uses the flow control mechanism to
bypass the packet reordering in a single flow.

The userspace includes a controller that opens a socket
connection TCP/IP to the device and applications created
at the user level as a loader to compile/load programs and
handle maps, an eBPF disassembler to convert binary code to
eBPF instructions, a software emulator to debug, and a CLI
application to interact with eBPF engines.

A. How Does eBPFlow Work?

The packet processing on eBPFlow begins with the
user-generated eBPF instructions via C eBPF or P4 code on

userspace. Once generated, the instructions take their course
from userspace to the data plane, where the system loads them
into the instruction memory. The communication between
userspace and data plane occurs through userspace tools,
loader, and PCIe bus. All processing on the platform occurs
without the user knowing specific low-level commands or
having experience with hardware targets.

The processing on the data plane begins with the packet’s
arrival in an Rx queue. RX’s queue demux forwards the packet
to the current eBPF engine according to the register value that
controls which eBPF engine has access priority. The access
priority algorithm between eBPF engines is a standard Round
Robin (RR) algorithm. If an eBPF engine cannot receive a
packet, the system updates the register to the next eBPF
engine. Each eBPF engine waits for the first packet word to
arrive. In the next step, eBPFlow processes and forwards the
packet to the output arbiter. It selects the current eBPF engine
packet that terminates the processing and sends it to the output
crossbar. The output arbiter chooses the priority of access
of the current eBPF equal to the demux using the standard
RR algorithm. The output crossbar receives packets of the
output arbiters simultaneously, it parallelizes the forwarding
of packets, and decides which TX queue will store the packet.
In its turn, the TX queue sends or drops the packet according
to the value stored in the eBPF r0 register. Each engine has one
action module. Thus, for 16 eBPF engines, we have 16 action
modules. The action module updates the packet’s metadata for
the TX queue to process it. The TX queue is responsible for
dropping the packet. We present more details about eBPFlow
in Section IV.

B. How Does eBPFlow Provide Flexibility and
Programmability of the Data Plane?

The eBPFlow is not tied to specific network protocols,
enabling programmers to perform runtime parse, match, and
action operations dynamically. On eBPFlow, programmers can
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Fig. 2. eBPF engine design.

change how the system processes packets after the design is
synthesized and loaded on hardware. This feature allows the
system to provide the flexibility of the data plane, defining
the packet processing logic in two ways: (i) Reconfigurable
in the field; and (ii) processing protocol-independent packets.
The combination of these functionalities allows programmers
to insert new fields and protocols. The eBPF technology is
responsible for the system’s flexibility using eBPF instructions
generated from programs in the C language.

eBPFlow supports the standard eBPF ISA, allowing sim-
ilar integration with other existing eBPF environments and
projects on the network. In addition, the eBPFlow provides
programmability, enabling programmers to describe packet
processing logic independent of the specifics of the under-
lying hardware. This feature becomes the target-independent
eBPFlow. Programmers only need to know the eBPF technol-
ogy to use the eBPFlow. It is possible due to a combination
of software and hardware technologies implemented on the
userspace and data plane of the system. For example,
hXDP [11] is similar to the eBPFlow, and it executes XDP
code. However, hXDP is incompatible with eBPF because of
the addition of new instructions, thus changing the standard
eBPF ISA.

C. eBPF Engine

Each eBPF engine comprises four hardware modules: a
Data memory FIFO (DM_FIFO), the eBPF processor, a Finite
State Machine (FSM), and an action module. Figure 2 shows
the eBPF engine design. The DM_FIFO stores packets on
the fly, working as data memory and FIFO with no extra
transfer. The eBPF processor is responsible for performing the
parse, matching, and actions using instructions stored in the
instruction memory. Also, the processor communicates with
the control plane through a socket TCP/IP. The FSM controls
the whole operation of packet processing. It removes the
packet from the DM_FIFO of the module, starts executing the
eBPF instructions, and forwards the packet to the next module
(action packet) when the last instruction (exit) of eBPF
finishes executing. The action module forwards or discards
the packet according to the value stored in r0 after processing
the eBPF instructions.

D. Metadata

The data plane receives the packet through the input inter-
face and stores the packet in the input queue with additional
information called metadata. Table I shows the metadata
header. The first line indicates the byte order and size. The

TABLE I
METADATA: INFORMATION RETRIEVED FROM THE INPUT QUEUE OF THE

STORED PACKET IN THE DATA MEMORY OF THE EBPF PROCESSOR

TABLE II
ACTION PERFORMED ON THE PACKETS

other lines show the stored structure. After the metadata is
received, it comes the Ethernet frame. eBPF programs and
any other protocol field can use the metadata header fields.
The currently defined metadata is the destination port, packet
size in multiples of 64-bit, source port, packet size in bytes,
timestamp in nanoseconds, and seconds. The fields of packet
size, in multiples of 64-bit and bytes, are included because the
input queue module already provided this information.

E. Actions

The register r0 stores the return value of the eBPF processor.
In addition, it determines which action the processor will
execute on the packet. Table II describes the return values
of eBPF and their respective actions. After eBPF finishes the
computation, the packet can be: forwarded to a port, forwarded
to the controller, discarded, flooded to all ports except for the
input port, or sent to the host machine via PCIe bus. eBPFlow
enables other dynamic actions such as modifying the packet
header, packet payload, and adding or removing fields. With
the packet stored in the data memory, a store instruction can
modify the packet. The packet content can also be used for
arithmetic and logical operations, for example, decrementing
TTL or recomputing checksum.

F. Output Crossbar

On eBPFlow, the output crossbar allows connecting the
eBPF engine outputs to TX queues using the output queues
(OQ) module of the NetFPPGA’s datapath as a buffer. Packets
processed by eBPF engines are forwarded to output queues
modules and TX queues via crossbar interconnect. TX queues
receive the packets based on the destination queue metadata
field generated by eBPF engines. This field receives the r0
value updated of the eBPF engine after the eBPF program
finishes. The output crossbar works on non-blocking mode,
allowing multiple simultaneous packet forwarding for differ-
ent TX queues. We used an N-to-M uni-directional crossbar
interconnection architecture to connect output queues to TX
queues. N is the number of output queues modules, and M is
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the number of TX queues. The crossbar interconnection has a
size equal to N ×M (4× 4 = 16 points).

IV. IMPLEMENTATION

Here, we describe the implementation details of eBPFlow.
We built eBPFlow data plane in Verilog HDL on the top of
the NetFPGA SUME platform and created tools on userspace
to manage operations of the system [12].

Hardware Instance: FPGA enables the building of hard-
ware logic systems. The NetFPGA SUME hardware has four
SFP+ transceivers that support 10 Gbps Ethernet ports. It con-
nects to a motherboard through a PCIe Gen 3 × 8 adapter.
In addition, it contains a Xilinx Virtex-7 690T FPGA [13],
which has approximately 693,120 logic cells, a 27 MiB
SRAM, and a 5 ns (200 MHz) clock cycle. After synthesis,
eBPFlow consumed 20.71% of the logical slices and 11.35%
of the register slices on the NetFPGA SUME. The maximum
frequency is 166.67 MHz (cycle of 6.172 ns).

A. eBPF Processor With Pipeline

The eBPF processor performs the parse, matching,
and actions according to the user-generated C-code or
P4-generated eBPF instructions. When starting the device
operation, the user must load the eBPF instructions into the
instruction memory to define the behavior of the data plane.
Figure 3 presents the data and control paths in register transfer
level (RTL), containing five data functional units (program
counter, instruction memory, register file, arithmetic logic
unit – ALU, and data memory) and three control units (hazard
detection, forwarding, and control).

After the instruction memory returns the instruction pointed
by the current program counter, eBPFlow divides the instruc-
tion into five parts: operation code, destination register address,
source register address, offset, and immediate value. Each
specific unit of the datapath receives part of the instruction.
The control unit receives the operation code and forwards the
control signals to the functional units, defining the behavior
of each unit. For example, the ALU class instructions do not
use the data memory, so the read and write signals from the
data memory are not activated.

We design the eBPF processor with a 5-stage pipeline:
instruction fetch (IF), instruction decode (ID), execute (EXE),
memory (MEM), and write back (WB). IF stage gets instruc-
tion from memory and increments program counter (PC).
ID stage translates opcode into control signals and reads
registers from the register file. EXE stage performs ALU oper-
ation and computes jump/branch targets. MEM stage accesses
data memory if needed. Finally, the WB stage updates the
register file. This design follows the MIPS load-store pipeline
architecture [14]. We add four pipeline registers (between the
stages), the forwarding, and hazard units.

B. Data Memory (Optimized FIFO)

To avoid the overhead of copying the packet from the
transfer FIFO to the processor data memory, we designed a
new abstract data type called Data Memory FIFO (DM_FIFO),
which works as a FIFO and as well a Data Memory. DM_FIFO

enables the eBPF processor to access the packet’s data without
waiting for all the packets to arrive with no extra transfer
and running load and store operations with high efficiency.
Moreover, DM_FIFO synchronizes with the NetFPGA datap-
ath’s modules (input arbiter and output queues) and the eBPF
processor. Therefore, the packet does not need to be initially
stored on FIFO and forwarded to data memory to be processed
by the processor.

We added two-way communication to communicate with
NetFPGA’s modules and eBPF processor. Thus, DM_FIFO
works as a FIFO receiving and forwarding packets using the
AXI4 stream interface signals. At the same time, DM_FIFO
also operates as a data memory that communicates with the
eBPF processor using control signals sent by the control unit of
the eBPF processor’s data path and load and store instructions.
As a result, DM_FIFO has a capacity of 2.048 bytes (64 depth
lines × 256 bits width) and can store up to 32 packets of
64 bytes.

The eBPF engine can start processing the packet even if the
packet has not fully arrived yet. Inside DM_FIFO, for each
word, we added a valid bit to indicate if the word contains
data from the new incoming packet. Thus, DM_FIFO brings
two advantages: It does not has no extra transfer and allows
the eBPF engine to begin the packet processing before waiting
for the entire packet to arrive.

Each engine has its own DM_FIFO. The DM_FIFO can
simultaneously receive multiple packets of the datapath. But,
it can only process one packet at a time. When a new packet is
inserted in the DM_FIFO, and an older packet is in processing,
it must wait for the processing to finish. The metadata region
can not be overwritten because we use a FSM. Each FSM has
its own metadata register.

1) eBPF Stack: On eBPFlow, the stack is part of the data
memory on the last bytes (2,112 to 2,624). We include the
stack in data memory to facilitate the eBPF engine access to
the stack. eBPFlow’s stack has a size of 512 bytes, the same as
the Linux’s kernel, following the standard of the eBPF virtual
machine. Figure 4 presents the data memory structure with
spaces reserved for metadata, packet, and stack. The loader
is responsible for defining the value r10 on the system. Byte
2,624 (0xa40) is the first byte of the stack. After the generated
eBPF instructions by the eBPF compiler, the loader initializes
and adds one instruction with r10 value (mov r10, 0a40)
on the eBPF program before loading the instructions on the
instruction memory of the eBPFlow. If there is a local variable
on the eBPF program, one of the r6 to r9 registers receives the
r10 value minus the number of bytes of the local variable size
to define the reserved space on the stack. With the address of
the local variable defined in a register, the eBPF processor can
access the local variable data on the stack through load and
store instructions.

C. Instruction Memory

The eBPF instructions define the behavior of how the
eBPF processor handles the packets. First, we created software
registers to insert the eBPF instructions into the instruction
memory through NetFPGA’s register interface. The controller
is responsible for sending the instructions to the data plane of
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Fig. 3. Control and datapath of the eBPF processor.

Fig. 4. Data memory division.

the eBPFlow. They are then written to the software registers
using the loader and forwarded to instruction memory through
the PCIe bus. Instruction memory uses a double buffer system
- DBS. This system contains two memories (M1 and M2). Both
memories never assume the same state (writing or reading)
simultaneously. It means that while a memory receives eBPF
program instructions, the eBPF processor reads the instructions
of other memory.

As a design decision, we have put the instruction memory
outside the eBPF processor to enable the connection of mul-
tiple processors using a shared instruction memory to reduce
the number of used logic resources in the design. Moreover,
with the increasing number of eBPF processors, it is possible
to process more packets simultaneously, thus also increasing
the throughput.

D. Maps

eBPF Linux kernel implementation allows for maps. A map
is a generic data structure that stores different data types in the
form of key-value pairs. Our design currently provides three
types of maps: longest prefix matching (LPM), exact-match,
and array, as hardware components of the system. For LPM,
we use the Ternary Content Addressable Memory (TCAM)
module combined with the BRAM (Block RAM).

Our TCAM module contains one TCAM memory with
32 lines of 64 bits. In addition, it spends 16 cycles for a write
operation and only one cycle for the read operation. We use
the Content Addressable Memory (CAM) module combined
with the BRAM for the exact match. The CAM module
contains one CAM memory with 32 lines of 64 bits. The

Fig. 5. Coprocessor and map table.

TCAM is implemented using Xilinx SRL16e primitives [15].
It is generated using Xilinx’s IP core generator coregen [16].
The CAM is implemented using block RAM (BRAM) instead
of SRL16e. This option enables writing on CAM using two
cycles instead of 16 cycles. We defined the size of 64 bits to
CAM and TCAM memories to optimize the system’s design
to insert other functionalities on eBPFlow. The size of these
memories can be extended to support keys greater than 64 bits.
However, it consumes more logical resources that can harm
the system’s performance. Another option is to treat hash
collisions using the keys of 32 and 64 bits and store 104-bit
on the BRAM (Block RAM), which is already in our design.
For the array map, we use the DRAM memory.

There are three functions to manipulate the maps: update,
delete, and lookup. The update operation updates an item on
the map. If the item does not exist, it inserts the item. The
delete operation removes the item with the given key. Finally,
the lookup operation searches for the key and returns an item.

The coprocessor needs to know the actual size of the data
read/written on the memory map. This information is stored on
fields type, key mask, value mask, and maximum number of
the maps table, shown in Figure 5, which holds metadata about
each map declared in the currently loaded program. A lookup
on the map table is performed on every map operation to
retrieve key and value masks used in a bitwise-AND operation
with the data to clean any unwanted bits. The coprocessor also
uses the map type to switch to the proper memory unit (CAM
or TCAM). The r3 register stores a pointer to the item when
used to operations with maps. The size of the r3 register is
64 bits based on standard eBPF architecture.

The eBPFlow supports 64 flows simultaneously using static
rules through the CAM and TCAM memories. However, if the
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user uses the wildcard mechanism of the TCAM memory
with the operator (*), the number of flows monitored can be
increased. Another mechanism to extend the number of flows
is to forward the packets to userspace for offline processing
via the PCIe bus. However, it is slow, decreasing the system’s
processing power due to the speed of the PCIe bus and context
switch between hardware and userspace.

E. Call Instruction

eBPF allows invoking functions to access tables. In our
design, to manipulate maps, we decided to use the TCAM,
CAM, and DRAM modules. The function call inside the
processor establishes communication with the coprocessor
hardware module to manipulate tables. Thus, the processor
communicates with the coprocessor module where there is a
call instruction. This module identifies what function (lookup,
update, delete) was called through the call instruction imme-
diate opcode parameter. Registers 1 to 4 store the passed
parameters on the call instruction. Register r1 indicates which
hardware module to communicate (tables TCAM, CAM,
DRAM, respectively). Register r2 provides the key. Register
r3 stores the item of 64 bits. Register r4 has the TCAM mask
item. The function return parameter is through register r0.
Since the call instruction requires register values, it can also
suffer from hazards in the pipeline. Therefore, the hazard unit
has to stall to solve this issue.

F. Bus, Demux and Output Arbiter

On eBPFlow, we implemented demux and output arbiter
modules to manage the receiving of the packet from the RX
queue to the eBPF engines and forward the packet from
eBPF engines to the output crossbar. Each RX/TX queue
has its demux and output arbiter. These modules use the
AXI-4 stream interface signals to synchronize the receiving
and forwarding of the packet from/to eBPF engines. Moreover,
these modules are sequential circuits that depend on AXI-4
stream interface signals value and the hardware register state
to control what eBPF engine has access priority. We used the
Round Robin algorithm to schedule between eBPF engines
using a finite state machine that controls the hardware register
responsible for access priority between eBPF engines.

G. User Space

It has a controller, a loader, and tools created at the user
level. We implemented it all in the Python language.

Controller: It opens a socket connection TCP/IP to the
device to exchange the messages. After establishing the con-
nection, the operator can transmit the eBPF program already
compiled as bytecode. Finally, the controller installs the byte-
code in the hardware at runtime.

Loader: It is responsible for the following operations:
loading code to the processors, appending two instructions,
handling maps, and interacting with the processor register
interface. Loader specially designed for the eBPF processor.
At the beginning of every eBPF program, registers r1 and r10
must be initialized with two pointers: one to the packet and

one to the stack’s top. Since these are specific to the runtime
environment (here, the processor), such initialization is not part
of the code generated by clang compiler. To handle maps, the
compiler adds map information to the eBPF ELF file as a
relocation section, which needs to be processed before code
execution. Loader adjusts all map call instructions with their
corresponding map values according to the relocation table
in the ELF file. Finally, the loader interacts with the system
through the register interface of the hardware, allowing to
update and query the content of maps from the user space
at run-time independent from the loading operation of the
program on eBPFlow. There is an option on the loader specific
only for operations with maps. Operations with maps via
user space do not harm the system’s performance because it
uses the register interface instead of the processing datapath.
Moreover, it can query status information about the processor.

Tools: A set of tools were implemented as part of the
eBPFlow infrastructure: an eBPF disassembler, a software
emulator, and a CLI application to interact with the eBPF
engines. The emulator leverages the uBPF [17]. Software
emulator aims to replicate the processor’s behavior in software.
Furthermore, it enables code testing and debugging with
well-known tools such as gdb, enabling faster and easier bug
detection and correction even before deploying the code.

Communication with host: We chose the NetFPGA’s
interface nf0 to receive and forward the packets sent from
hardware to the host. We do not define the number of cores
on the host’s CPU to process the packets on userspace. Instead,
we leave the operator responsible for defining the number of
cores according to the processing demand of the host.

H. Re2c

Re2c [18], [19] is a lexer generator capable of convert-
ing regular expressions into fast and optimized finite state
machines (FSM). As a result, users can write new protocols
in eBPF. We use re2c to convert regular expressions into
eBPF-compatible C code. The process encapsulates the FSM
generated by Re2c within a function with control pointers.
It is also necessary for all states to verify that the pointer’s
current value is greater than the address at the end of the
packet to prevent invalid memory access. After this, the
code is packaged in a single file and compiled by the eBPF
compiler. Then, a controller sends the generated instructions
to eBPFlow, saving them in its instruction memory. From that
moment on, the system waits for incoming packets, processes
them according to the instructions present in the memory, and
performs the appropriate actions according to each packet’s
content. We do not create an interface between re2c and
eBPF-compatible C code, being necessary adaptations for
the generated code to work in the eBPFlow. We left the
programmer responsible for this task.

V. NETWORK FUNCTIONS

We have implemented some NFs (Table III) on eBPFlow to
demonstrate the offloading of functions and the acceleration
in packet processing. For each NF, we present the number of
eBPF instructions (#Instructions), the number of C code lines
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TABLE III
NETWORK FUNCTIONS IMPLEMENTED ON EBPFLOW

(#LoC in C), is there state (Yes/No)?, and the number of states
(#States). Here is the description of the NFs:

Wire: acts as a wire connecting adjacent ports in pairs of
two. It performs an XOR operation between the input port
value and 1, which inverts the least significant bit. This value
defines the outgoing packet port. It is the most straightforward
application and serves as a performance baseline.

LPM Forwarding (LPMF): forwards packets using the
NetFPGA’s TCAM module, effectively speeding up longest
prefix matching (LPM) operations. In addition, this NF can
use up to 32 forwarding rules inserted by the user through the
loader.

DDoS Mitigation (DDoS): tries to saturate broadband
or overload networking equipment’s computational resources,
limiting the processing or making unavailable services,
servers, and the target network. This NF can analyze random
ports of UDP packets. Moreover, it can block the attack on a
specific port, dropping the packet and not allowing the attack
to have success [20].

Stateful Firewall (SFW): is a network firewall that
tracks the status and characteristics of network connections,
distinguishing packets for different types of communica-
tions and propagating only packets that match the active
connections [21].

SQL Injection with Tautology (SQL_TAU): this attack is
characterized by the insertion of tautologies in an SQL query,
making them manipulable. For example, if the system has the
query SELECT * FROM Users WHERE Id = “username”
where username is a user-supplied parameter. If no input filter
exists, the attacker can exploit the vulnerability by sending the
string “OR 1 = 1 as a parameter. The resulting query will
be SELECT * FROM Users WHERE Id = “” OR 1 = 1,
which is valid and returns all rows in the Users table, since
1 = 1 is always true. It consists of four states that lead to two
possible final actions: PASS if there is no attack or DROP if
the malicious string is detected before the end of the payload.
The first state detects the beginning of the attack, single or
double-quotes. The second state detects the presence of spaces
and the keyword OR. Finally, the last state detects the end of
the attack, 1=1.

SQL Injection with Sleep function (SQL_SLEEP): this
attack allows hackers to look for possible SQL vulnerabilities
on a server. It uses the User-Agent field of HTTP requests to
send an SQL query that calls the function sleep, applying a
delay in seconds to the current operation. During the delay
period, any further requests received run only after the end of
the first query, which indicates to the attacker that there are
vulnerabilities that allow the insertion of other SQL attacks.
The first state detects the presence of the User-Agent keyword
or ends processing if it arrives at the end of the payload.
The second state looks for the sleep ( string, which indicates
the presence of the attack within the specified field. The
processing terminates if a line break occurs before this string.
The SQL injection NFs presented above are examples of
functions that use regular expressions to efficiently analyze
packet payload. This type of analysis is critical today, in which
servers store a large amount of valuable data, demanding
protection against this and other types of attacks.

BitTorrent Packets (BITP): BitTorrent can cause many
simultaneous connections, which can overload the network.
This NF detects four BitTorrent packet types based on Strait
and Sommer [22]. It is an example of an Application Layer
Packet Classifier. The first state is responsible for detecting
the patterns’ initial character at the beginning of the packet
payload. The following four states detect the rest of the strings.
This NF only forwards the packet if the patterns are not present
at the end of the payload.

VI. EVALUATION

Here, we present the experimental evaluation of eBPFlow.
The testing environment contains one NetFPGA SUME, one
server running pktgen-DPDK [23] as a traffic generator, and
a custom controller to interact with the eBPFlow’s data plane.
Our server couples a Netronome Agilio CX SmartNIC and
an Intel X710 DA-2 SmartNIC with two 10 Gbps interfaces
directly connected to the four NetFPGA SUME ports. We add
Intel and Netronome boards on pktgen-DPDK userspace to
generate the traffic and to receive the traffic forwarded by
NetFPGA SUME, running the eBPFlow design. In addition,
the server and machine with coupled NetFPGA SUME have
i7-7700 processors clocked at 3.60 GHz containing eight cores
and 8 GB of RAM.

A. Throughput

We evaluated the performance of the eBPFlow to packet
processing rates 64 bytes (minimum-sized), 512 bytes (middle-
sized), 1,500 bytes (maximum-sized), respectively, for network
functions described in Section V. Moreover, we used the same
parameters to evaluate the system’s performance, the number
of processing cores per port (one and four), and the number
of links generating the traffic (1× 10 and 2× 10 G).

Figure 6a summarizes the system’s throughput according
to the number of cores. For packets of 64 bytes using one
processing core, all network functions except the Wire achieve
throughput less than 4 Gbps, demonstrating that the number
of cores affects the system’s performance. However, when the
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Fig. 6. eBPFlow performance: throughput and latency.

number of cores passes from one to four per port, the through-
put of all NFs doubles or achieves line rate (10 Gbps). Wire,
DDoS mitigation, SQL Injection attacks, and Bittorrent filter
achieve line rate for 64 bytes packets. Moreover, these NFs
do not realize operations with maps using CAM/TCAM mem-
ories. Stateful Firewall and LPM forwarding have improved
throughput with the increase of the number of cores from one
to four but yet had throughput reduction due to spent time
with operations of access to maps (Section VI-D presents the
time in clock cycles and microsecond of each operation).

Figure 6b presents the throughput of the eBPFlow based on
the number of links generating traffic per port. We generated
traffic using one and two links of 10 Gbps to evaluate the
system’s performance when stressed. To packets of 64 bytes
using one and two links of 10 Gbps, the system had a
throughput of less than 6 Gbps per port for all NFs, except the
Wire. With two links of 10 Gbps for 512 bytes packets, Wire,
DDoS mitigation, and Stateful firewall achieve a throughput
of 20 Gbps. On the other hand, SQL Injection attacks and
Bittorrent filter achieve a throughput of 16 Gbps, reducing
throughput due to the number of instructions because they
spend more time processing packets than other NFs and the
bottleneck on the FIFOs of the datapath. LPM forwarding
has been improved throughput using two links, but the spent

time with operations of access to map TCAM harmed the
throughput to this network function. Finally, to 1,500 bytes
packets, using one and two links, the eBPFlow achieved the
maximum throughput (10 and 20 Gbps), respectively, to all
NFs without packet loss.

B. Latency

In addition to the throughput, we also measured the average
and tail latencies for each NF (Figures 6c and 6d) using
pktgen-DPDK, with 1 µs precision. pktgen-DPDK measures
the end-to-end latency by adding a timestamp on the packet
payload. It calculates latency stats, sends the packet to the
network, and after the packet returns, gets the timestamp and
calculates the time stats. In this experiment, we load the Intel
smartNIC on pktgen-DPDK userspace and use one port to
send packets and another port to receive the back packets.
Moreover, we repeated each experience 33 times for each NF
for packet sizes 64, 512, and 1,500 bytes. As expected, latency
increased according to the packet size increase because the
number of words on the data plane increased, taking more
time to run the entire program. All experiments had a latency
of less than 20 µs. This metric demonstrates little change in
the processing time between same-sized packets for a single

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination. 

Authorized licensed use limited to: University of Southern California. Downloaded on October 25,2023 at 01:55:59 UTC from IEEE Xplore.  Restrictions apply. 



10 IEEE/ACM TRANSACTIONS ON NETWORKING

Fig. 7. Communication with host.

NF, leading to reduced jitter. Similarly, the tail latency is
close to the average value in almost all cases. The bars in
Figures 6c and 6d represent the standard deviation, which was
close to zero in all cases.

C. Communication With Host

Throughput: Figures 7a summarizes the throughput of the
eBPFlow communicating with the host. We measured the
throughput using iPerf3 tool [24] in two directions: eBPFlow
communicating with the host (eBPFlow to host) and host
communicating with eBPFlow (host to eBPFlow). We executed
iPerf’s client program on the server and iPerf’s server program
running on the machine with NetFPGA SUME. Moreover,
we generated traffic with TCP packets of 64, 512, and 1,500
bytes in one second. The results show that the system achieves
a throughput of less than 5 Gbps to all packet sizes in both
directions. It occurs due to context switch and the IP core
PCIe v3 with 8-lane of the Xilinx to achieve a maximum
transference speed of 5 Gbps [25].

Latency: In this experiment, we measured the average
(Figure 7b) and tail (Figure 7c) latencies of the eBPFlow
communicating with the host using pktgen-DPDK, with 1 µs
precision. On a host (machine with coupled NetFPGA),
we used Linux’s traffic control subsystem called (tc) [26] to
receive the packets from board to host and send them back
from host to board. Tc is responsible for setup traffic control
in the Linux kernel. Moreover, we repeated each experience
33 times for each NF for packet sizes 64, 512, and 1,500 bytes.
eBPFlow’s latencies (average and tail) had a latency of less
than 20 µs with a standard deviation close to zero. While host
average and tail latencies were less than 30 and 40 µs with
a difference of 10 and 20 µs if compared with eBPFlow’s
latencies. These results demonstrate that sending the packet
from board to host is slower than processing the packet only
on the board. However, communication with the host allows
dividing the workload between hardware and software and
supporting operations not synthesizable.

D. Coprocessor Measurement

This experiment evaluates the coprocessor time spent on
each function call (lookup, delete, and update) on eBPFlow.
We performed this experiment by adding time registers over

TABLE IV
COPROCESSOR TIME SPENT FUNCTION CALL

the coprocessor’s Verilog code. In addition, we created an
application to read and add the time values to obtain the time
spent after the function call execution. Table IV presents the
time in clock cycles (clks) and microseconds (µs) spent on
the coprocessor to each eBPF function call. The measurement
begins when the coprocessor triggers the call function pro-
cessing. Each register on code increments its value according
to the time spent executing a coprocessor’s code-specific
functionality. After the coprocessor finishes the function call
execution, the application reads and obtains the total time
spent on the function call. We compare the times obtained
via simulation and tests in the real environment to validate
the experiment.

E. eBPFlow Performance on Packet Processing

We evaluated the packet processing capacity of the eBPFlow
compared to kernel and Netronome that support offloading of
eBPF programs. The kernel runs eBPF programs in software,
while Netronome uses a SmartNIC. To compare both systems,
we choose the network functions SQL Sleep because it is
the eBPF program with more significant numbers of instruc-
tions (Table III). We executed this NF on the three systems.
Moreover, we measured the throughput in millions of packets
per second (Mpps) to evaluate the packet processing power
between software (using kernel Linux 5.0.4) and hardware
(using Netronome and eBPFlow). We generated packet rates
of 64, 512, and 1500 bytes using pktgen-DPDK.

On the kernel, we insert a map structure in each net-
work function to count the number of processed packets and
measure this information using the xdp-stats tool available
in [27] for each experiment. We evaluated Netronome Smart-
NIC with their stat_watch.py tool [28]. Figure 8 presents the
throughput in Mbps of each system, respectively, to evaluate
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Fig. 8. Systems performance on packet processing.

Fig. 9. Throughput: eBPFlow, CPU, and hXDP.

network function. Netronome and eBPFlow processes approx-
imately 12.05, 0.87, 0.15 Mpps more than the kernel to
packet sizes 64, 512, and 1500 bytes. The packet processing
between Netronome and eBPFlow is similar to all packet sizes.
However, eBPFlow provides functionalities not available on
Netronome, such as parallelism per port using eBPF cores
reserved per port and parallelism on packet forwarding using
an integrated output crossbar on the system’s data plane. In the
Related Work Section (Section VII), we describe more details
between both systems.

F. eBPFlow Performance Compared to Other Systems

We compared the performance of two systems (hXDP and
CPU x86@3.7 GHz) that are similar to eBPFlow. hXDP
runs eBPF code on the NetFPGA. CPU means we execute
code in the kernel. Kernel executes eBPF code on the CPU.
We evaluated the throughput and latency of the systems to
64 bytes packets (minimum-size) using a firewall as a network
function. We choose the firewall as NF based on experiments
of [11]. Moreover, to compare the systems fairly, for eBPFlow,
we used one physical port to receive packets, one physical port
to send packets, and four eBPF engines. This is the same setup
applied to CPU and hXDP [11].

Throughput: Figure 9 presents a throughput comparison
of the systems. hXDP achieves a throughput of 4.36 Gbps.
CPU x86@3.7 GHz gets a throughput of 4.97 Gbps. Finally,

Fig. 10. Latency: eBPFlow, CPU, and hXDP.

eBPFlow obtains a throughput of 6.95 Gbps. This result
demonstrates that the eBPFlow has a processing performance
improvement of 2.59 and 1.98 Gbps over hXDP and CPU
x86@3.7 GHz, respectively.

Latency: Figure 10 presents a latency comparison of the
systems on packet forwarding. CPU x86@3.7 GHz gets
a latency of 11 µs. hXDP achieves a latency of 3 µs.
Finally, eBPFlow obtains a latency of 13.30 µs. This result
demonstrates that the eBPFlow spends more time on packet
forwarding 2.3 µs and 10.3 µs about CPU x86@3.7 GHz
and hXDP, respectively. eBPFlow overcomes this limitation by
providing parallelism in design and processing more packets
than both systems.

G. Power

When idle, the NetFPGA consumes 16 W. However, when
we synthesize eBPFlow, the power consumption is 22 W
regardless of the packet rate or running program [21]. Devices
as Netronome [29], [30], Intel Core i7-7700 [31], 1U rack-
mount x86 [32], and P4 Wedge 100BF-32X [33] have power
consumption of approximately 25-40 W, 65 W, 300-350 W,
and 436 W, which demonstrates that eBPFlow saves power in
comparison to the listed devices.

VII. RELATED WORK

EBPFlow is the first SW/HW system that seamlessly
offloads NFs and can process packet headers and payloads to
the best of our knowledge. eBPFlow enables the programming
of stateful and stateless NFs, and can dynamically modify the
parser, matching, and actions at runtime.

Programmable networks. The OpenFlow [34] standard,
although being the most adopted SDN architecture [35],
has limitations. Its matching structure cannot do inequal-
ity, complement (not operation), or range matching. On the
other hand, eBPFlow allows for logical expressions (not, and,
or) and range comparison (>,<). Liu et al. [36] developed
the CLARA, a network slicing architecture that uses NFV
concepts and reinforcement learning algorithms for resource
allocation management. Finally, Yen et al. [37] proposed the
Lemur, a system that places and executes NF chains across
heterogeneous hardware while meeting service-level objectives
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(SLOs) in NFV. It receives as input a high-level description of
multiple NF chain DAGs and their associated SLOs. As output,
the system returns a placement configuration for each NF chain
and coordination code, ensuring that the NF executes on the
appropriate hardware element specified by the placement.

High level domain-specific languages. The P4 program-
ming language P4 [38] adopts the match-action abstraction
model. Therefore, it is possible to use the P4 language to
generate eBPF instructions using the compiler from P4 to
eBPF [39]. Domino [40] is a high-level language compiled
into Banzai, a low-level machine model designed for line-rate
switches. Although P4 and Domino include small and fast
registers to store states, they provide a restricted functionality
for many stateful functions. Kfoury et al. [41] present an
exhaustive survey about P4 programmable data plane switches
highlighting subjects like taxonomy, applications, challenges,
and trends.

BPF related. BPFabric [42] proposed a software platform
that allows protocol-independent packet processing. It uses
eBPF instructions to define the packet processing and for-
warding in the data plane. BPFabric was initially implemented
over a Linux raw socket interface and later adapted over
the DPDK. hXDP [11] is a system to run Linux’s XDP
programs on an FPGA. hXDP is similar to the eBPFlow, and it
executes XDP code. The hXDP design changed the load/store
instructions and introduced three-operand instructions. The
hXDP design does not support network functions offloading
at runtime like the eBPFlow, which has many processing
cores with an instruction memory containing a double buffer
system. FFShark [43] is an implementation of the Wireshark
in an FPGA. It contains eBPF cores to execute written filters
in the PCAP filtering language. However, FFShark does not
provide instructions parallelism with eBPF cores containing
a 5-stages pipeline coupled on the cores. Katran [44] is
an open-source eBPF load-balancer application provided by
Facebook, showing eBPF’s adoption trend in the industry.
Chaining-Box [45] is a Service Function Chaining (SFC)
architecture where all the SFC functionality are implemented,
in a fully transparent manner, as a sequence of eBPF stages.

FPGA related. P4FPGA [46] is a platform developed in
hardware that performs the conversion of P4 programs to
Verilog. P4-To-VHDL [47] is a tool that converts a P4 descrip-
tion to a synthesizable VHDL code suitable for the FPGA
implementation. ClickNP [48] also focuses on increasing
programmability flexibility. It provides a declarative language
called ClickNP. ClickNP can be compiled into an intermediate
hardware description language (HDL) and synthesized on
the FPGA. Zang et al. [49] proposed a distributed-agent
NFV system that supports Service Function Chaining (SFC)
of FPGAs and microprocessors. The system works with an
agent helping the partial reconfiguration core to control the
dynamic reconfiguration of middlebox functions on FPGAs.
FlowBaze [21] is an FPGA-based SmartNIC that allows
stateful packet processing in hardware by programming using
Extended Finite State Machines (EFSM). However, it cannot
operate on the packet payload and only supports storing
64 states. eBPFlow does not have these limitations because
the states and transitions of an FSM are transformed into

instructions. PANIC [50] is an FPGA based on Reconfigure
Match Action (RMT) switches that schedule the order in which
the packets are processed and distribute the packets across the
different compute units. Eran et al. [51] proposed the NICA,
an FPGA-based NIC server acceleration system that supports
software abstractions via functional units for application accel-
eration in cloud systems. NICA was implemented on Mellanox
and integrated with an abstraction denominated ikernel (inline
kernel), which represents an Acceleration Functional Unit
(AFU) in a user program. Finally, other related works that
use FPGAs [52], [53], [54].

Smart NICs. Netronome [8] provides a SmartNIC pro-
grammed with eBPF instructions. Some features and com-
mands are specific to the kernel and firmware version,
generating incompatibility on the network. When an update
is released, firmware or kernel needs to be updated manually,
generating failures and hindering the management of the
network. Nonetheless, eBPFlow does not have these dependen-
cies. It is independent and seamless with other technologies,
e.g., the Linux kernel. Furthermore, to load a program into
Netronome NIC, the code has to pass a verifier which does not
allow back-edge jump (e.g., for, while), so the SmartNIC can
not compute DPI NFs with different packet sizes. Netronome
NICs have very low port density, with at most two ports
per NIC. On the other hand, the eBPFlow prototype has
12 physical ports. Moreover, eBPFlow design includes specific
memory hardware, such as CAM and TCAM, to handle
stateful NFs. Dyssect [55] disaggregates the states of NFs and
allows the offloading of stateful NFs to programmable NICs.

VIII. CONCLUSION

eBPFlow is a packet processing platform targeted for
high-performance data planes composed of hardware and
software components built on top of the NetFPGA SUME
platform. The system dynamically supports parsing, matching,
and actions operations through eBPF instructions. Moreover,
eBPFlow is protocol-independent, and it allows the use of
new fields, easing the adoption of new protocols and services.
In addition, eBPFlow can process both the packet header and
payload at the line rate. Another functionality fundamental of
the system is to support programmable network functions at
runtime, modifying the flow processing logic by swapping the
image of the eBPF program using an instruction memory with
a double buffer system. We designed and implemented multi-
ple eBPF virtual machines in hardware at its core to support
these functionalities, communicating with userspace tools. The
eBPFlow’s repository is publicly available on Github [56].
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