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Abstract— The problem of robotic lime picking is challeng-
ing; lime plants have dense foliage which makes it difficult
for a robotic arm to grasp a lime without coming in contact
with leaves. Existing approaches either do not consider leaves,
or treat them as obstacles and completely avoid them, often
resulting in undesirable or infeasible plans. We focus on
reaching a lime in the presence of dense foliage by considering
the leaves of a plant as permeable obstacles with a collision cost.
We then adapt the rapidly exploring random tree star (RRT*)
algorithm for the problem of fruit harvesting by incorporating
the cost of collision with leaves into the path cost. To reduce
the time required for finding low-cost paths to goal, we bias
the growth of the tree using an artificial potential field (APF).
We compare our proposed method with prior work in a 2-D
environment and a 6-DOF robot simulation. Our experiments
and a real-world demonstration on a robotic lime picking task
demonstrate the applicability of our approach.

I. INTRODUCTION

Fruit harvesting is a labor-intensive task that constitutes
a significant portion of the fruit production cost [1]–[3].
Introducing robots can be a cost-effective solution for labor
shortages in fruit harvesting [4]. The task of fruit picking
involves locating the fruit and planning the motion of a robot
arm to reach, grab, and retrieve the fruit. To use robots for
harvesting fruit, the robot must not damage the plant or the
fruit while working as fast as possible [5]. In this work, we
focus on the problem of planning the reach-to-grasp motion
of a robotic arm for lime picking such that it avoids collision
with leaves if possible, but will push through the leaves if
there is no alternative.

Previous research in robotic fruit harvesting uses rapidly
exploring random tree (RRT) or its variants [6]–[9] to plan
the reach-to-grasp motion of fruit-picking robots. These
robots have high degrees of freedom (DOF) arms to reach
and grab the fruit. Hence, sampling-based methods are pre-
ferred as they are less computationally expensive than search-
based methods like A* in high dimensions [10]. While
planning, the grasp pose for a target fruit is considered as the
goal, and the stems and untargeted fruits are considered as
obstacles. Previous work also avoids collision with the leaves
[11] or models the plant foliage as a cylinder that must be
entered radially [12], [13]. However, the majority of prior
work does not consider the leaves at all [6], [14]–[17].

This is reasonable when the fruit is well separated from
the plant foliage, but in the case of lime trees and many other
important subtropical and tropical tree crops, the fruits are
often engulfed by leaves [18]. Ideally, the robot would mea-
sure and avoid collision with leaves, avoiding tree damage,

∗ Denotes equal contribution. Heramb Nemlekar (nemlekar@usc.edu) is
the corresponding author.

Fig. 1: Limes are often engulfed by leaves. If a collision-free path does not
exist, the robot must find a path that has minimal collision with the leaves.

while picking fruit. However, this ideal is seldom possible
in reality. While some fruits may grow in their outer canopy,
most fruits are buried deep within in a thicket of leaves
and inner branches.1 Thus, there may not be a completely
collision-free path to pick a fruit.

Our goal is to find a path that allows for collisions with the
leaves but avoids them to the extent possible. To this end, we
consider leaves as permeable obstacles such that we allow
the robot to collide with the leaves but impose a penalty or
cost for the collision. Therefore, we want to find a path to the
goal that incurs the least-collision cost. Moreover, if multiple
paths have similar collision costs, among these we want to
find the shortest one. Thus, we consider the multi-objective
problem of finding the shortest, least-collision path.

We can formulate the objective as a weighted sum of the
different costs [13]. To optimize this objective, we adapt
the sampling-based algorithm - RRT*, by incorporating the
cost of collision with permeable obstacles into the path cost.
Therefore, when adding a node into the tree, we choose a
parent based on the sum of the path length and collision
costs. We also rewire nodes based on this total cost. So as
the tree grows, we are able to find paths with lower costs (if
available), thus reducing collision with the leaves.

RRT* can require many iterations to find close-to-optimal
paths for high-DOF arms, which may be unsuitable for the
short cycle time required for fruit harvesting. To speed up the
search, one approach is to bias the random samples towards
the goal by applying an artificial potential field (APF) and to
extend the tree towards the biased sample [19]. However, this
may not be ideal for fruit picking where the obstacles (leaves)
engulf the goal (lime) and prevent the random sample from
being biased towards it.

Instead, we propose applying the potential field bias di-
rectly to the nearest node and adaptively changing the bias

1There is a fundamental, biological reason for this: in the case of citrus,
avocado, and many warm-climate crops, the trees develop dense canopies
to prevent bark and fruit damage from intense sunshine.
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based on its vicinity to obstacles. Our method extends the
node towards the goal when in free space (exploitation) and
towards a random sample when near obstacles (exploration).
Therefore, we can bias paths towards the limes at the start
and explore when near the leaves, to effectively find low-cost
paths that have minimal collision with leaves.

In summary, our key insight is considering the leaves
as permeable obstacles while planning the reach-to-grasp
motion of a robot arm for picking limes. Our work makes
the following contributions: (1) We adapt RRT* to account
for the cost of collision with leaves during planning. (2) We
propose a new artificial potential field (APF) approach for
effectively biasing the growth of RRT* to find low-cost paths.
We compare our proposed method with prior work in a 2-D
environment and a 6-DOF robot simulation. Finally, we show
how our method can be practically deployed in a real-world
6-DOF robotic lime picking demonstration.

II. RELATED WORK

A. Motion planning for fruit harvesting

Robot fruit harvesting problems typically require planning
the motion of a high-DOF robot arm from its initial config-
uration to the fruit position through a cluttered environment.
We can either plan the robot’s path in the workspace [12],
[13] and then map it to the configuration space (C-space) of
the robot, or directly plan in the C-space [11], [17], [20].

Sampling-based methods such as RRTs [6]–[9], which use
random samples in the C-space to grow the search tree, are
typically preferred for high-dimensional planning problems
like fruit harvesting. A comparison of motion planners for
grape pruning with a 6-DOF robot arm [10] shows that RRT
variants have the best overall performance compared to other
sampling-based algorithms including KPIECE [21] and its
variants, EST [22], and SBL [23]. RRTs have also been
effectively used for picking litchis [6]. To reduce planning
time, the growth of the RRT is biased towards the target
litchi using an attractive potential field. Experiments in apple
harvesting [15] have shown that RRT-Connect [24] is more
efficient than KPIECE and EST in finding a path to the target
apple. Bi-directional RRTs have also be used for planning the
motion of the end-effector for sweet pepper harvesting [16].

This motivates us to consider RRT-based approaches for
the lime picking task. While most approaches for fruit
harvesting only consider the main stem, branches or other
fruits as obstacles [6], [14]–[17], they do not account for
collision with the leaves. If the robot ignores the leaves, it
could potentially damage the plant foliage.

B. Cost-based RRT approaches

We can account for collision with the leaves by assigning
a cost for the collision. This results in a planning problem
where each robot configuration has an associated collision
cost and the aim is to find a low-cost path to the goal.

A common sampling-based approach to cost-based plan-
ning is Transition-based RRT (T-RRT) [25], [26] and its
variants [27]–[29]. In T-RRT, if a new node has higher cost
than its parent, it is added to the tree with a probability

inversely proportional to the difference between the cost of
the node and its parent. However, as this approach rejects
most of the nodes with a higher cost, a lot of iterations are
required to plan through high-cost regions. Moreover, though
it can produce low-cost paths, this approach does not reason
about searching for paths of decreasing cost.

To find lower-cost paths based on multiple metrics, e.g.
time spent by the planner and path length, the costs can be
incorporated into the edge weights of a roadmap graph [30].
In the case of lime picking, we consider the bi-criteria
optimization problem that combines permeable collision cost
and path length. Towards this end, we propose a modified
RRT* algorithm [31] that uses this combined objective to
evaluate the cost of paths in the tree.

C. Potential guided RRT*

RRT* can require a lot of iterations to search for a least-
cost path in the C-space of a cluttered environment. However,
we may need to limit the number of iterations so that the lime
picking operation can be completed in an economical time
[5]. Therefore, we want to bias the growth of the tree such
that low-cost paths can be found in fewer iterations. Prior
work either samples nodes only from a connectivity region
between the start and goal [32]–[34]; or uses an APF [19],
[35], [36] to bias the growth of the tree towards the goal. To
further improve the efficiency, an APF bias can also be used
with a bi-directional RRT* approach [37]–[40].

In the majority of prior work, APF is used to bias the
random sample towards the goal. Then, the nearest node
in the tree is extended towards this biased random sample.
However, in the case of lime plants, this would not effectively
bias the search towards limes that are engulfed by leaves.

Instead, we can use the APF to directly bias the nearest
node of the tree. This requires us to balance between moving
in the direction of the random node (exploration) and moving
in the direction of the potential force (exploitation) to avoid
being stuck in local minima. Prior work implements this
approach for an RRT algorithm and uses equal weights for
the random and potential force directions [41]. This is not
ideal for lime picking, since to effectively find low-cost paths
we should be able to explore when near the leaves and exploit
when away from the leaves. In this work, we extend this
approach to RRT* and propose an adaptive approach for
reducing the potential bias when the node is surrounded by
obstacles. This allows us to bias the robot towards the limes
at the start, and prefer exploration when it is near the leaves
to find lower cost paths.

III. METHODOLOGY

Our key insight is to consider the leaves of the plant as
permeable obstacles. We define collision with permeable
obstacles similar to a soft constraint, where we allow the
robot to be in collision with the permeable obstacle but
impose a penalty or cost for the collision and try to find a
path that minimizes the incurred cost. On the other hand, we
consider other obstacles like the plant stem as impermeable
obstacles and define collision with impermeable obstacles as
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a hard constraint that must be avoided. Therefore, we have
two types of obstacles:

O = {Opermeable, Oimpermeable}

We adapt the RRT* algorithm to find a path that avoids
impermeable obstacles and minimizes collision with perme-
able obstacles. Moreover, we apply an artificial potential field
(APF) to effectively bias the growth of the tree such that the
minimum cost paths can be found in fewer iterations. Our
proposed cost-based APF-RRT* method follows similar steps
to the vanilla RRT* algorithm. The steps which we modify
to incorporate collision cost and apply the potential bias are
shown in bold (see Algorithm 1).

Algorithm 1 Cost-based APF-RRT* Algorithm

Require: Qfree, Obstacles O, Goal qgoal
1: add qstart to tree T
2: for max iterations do
3: qrand ← random sample(Qfree)
4: qnear ← nearest node(T , qrand)
5: qnew ← potential biased extend(qnear, qrand, δ)
6: if collision free(qnew, O) then
7: set collision cost(qnew, O)
8: add qnew to T
9: N ← neighbours(qnew)

10: update parent(qnew, N )
11: rewire(qnew, N )
12: path ← check solution(qnew, qgoal)

A. Incorporating the cost of permeable obstacles

The goal of the robot planner is to find a path τ in the
collision-free C-space Qfree from the start configuration
qstart of the robot to the goal configuration qgoal. Since
we want to allow the robot to plan through the permeable
obstacles, we define Qfree = Q\Qimpermeable. Therefore,
we consider the configurations that lie on the permeable
obstacles to belong to Qfree.

At each iteration we randomly sample a configuration
qrand from the collision-free configuration space Qfree (Line
3). We then find the nearest node qnear in the tree T
to the random sample based on distance d between the
configurations (Line 4). The C-space distance d is the same
as in the vanilla RRT*. Here we do not add the collision cost
to d, since prior work [42] has shown that it can cause the
planner to only extend nodes near the start (in free space)
and not explore the obstacle region (leaves) near the goal.

While the vanilla RRT* algorithm extends the nearest node
simply towards the random sample by a step size δ, we
extend the nearest node in a potential-biased direction by
δ to obtain a new node qnew (Line 5). The potential bias
adaptively combines moving in the random direction with
moving in the direction of the APF (see Section III-B).

Once we obtain qnew, we then check if the new node is
valid i.e. if qnew ∈ Qfree. This is how the hard constraint
that the robot must not be in collision with the impermeable

obstacles is imposed. If the node is invalid, we reject the
node and sample a new random node (Line 3). If the node is
valid, we check if it lies on a permeable obstacle and assign
a collision cost Cperm(qnew) (Line 7).

Cperm(q) =

{
R>0 q ∈ Qpermeable

0 otherwise (1)

We assign a positive cost if the node lies on a permeable
obstacle and 0 cost if the node does not lie on any obstacle.
In order to generate paths that try to minimize this collision
cost, we consider the collision cost while: (i) determining
the best parent for qnew from the neighbouring nodes N
(Line 10) and then (ii) rewiring the neighbours (Line 11).
We determine the neighbouring nodes N purely based on
their distances in the configuration space from the new node
qnew. Specifically, neighbours N are all nodes in the tree T
that are within a C-space distance of r ≤ δ from qnew.

Traditionally RRT* connects the new node to a parent
qpar such that the cost of the path from the start node qstart
to qnew i.e. Cpath(qnew) = d(qnew, qpar) + Cpath(qpar), is
the least from among the neighbouring nodes N . Here, we
incorporate the collision cost Cperm into the path cost Cpath,
so that we can select a parent based on the sum of the length
of path from qstart and the collision costs incurred on that
path. Therefore, the path cost of qnew from parent qpar:

Cpath(qnew, qpar) = d(qnew, qpar) + Cpath(qpar)

+Cperm(qpar)
(2)

This makes the problem multi-objective. Whether we
select a parent with the shortest distance from start or with
the least collision cost depends on the magnitude of length
d(τ) and collision Cperm(τ) costs. If Cperm > d, we will
give more importance to minimizing the collision cost and
if Cperm < d more importance will be given to minimizing
d. In this work, we select a high collision cost Cperm such
that we prioritize finding paths with the least collision cost.

We select the best parent q∗par for qnew based on the
minimum Cpath(qnew, qpar) of all qpar ∈ N . The next step
is to see if setting the new node as the parent of any of
the neighbouring nodes, reduces their path cost. Similar to
before, we incorporate the collision cost of the new node
qnew while determining the cost of path Cpath(q, qnew) to a
neighbouring node q during the rewiring process.

Therefore, as the tree grows we rewire neighbouring nodes
such as to select parents with the least path cost that includes
the cost of collision with permeable obstacles. This allows
generating paths by connecting a new node to a parent
whose path from start has the least total collision cost. Thus,
our proposed method can effectively reason about reducing
collision with permeable obstacles like leaves.

After all iterations, we select a node near the goal with
the least path cost as the parent of qgoal and trace a path
back to qstart.

B. Using APF to bias the extension of nearest node

We want to bias the extension of the tree, such that we can
find lower-cost paths in a limited number of iterations. To do
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this, we must bias the growth of the tree towards the goal so
that we do not waste iterations in exploring the free space. At
the same time, we need to explore in areas near the leaves,
so that we can find alternative paths that may have lower
costs. Prior work [19] uses APF to bias the random node,
and thus does not consider the potential forces at the nearest
node to adapt how it is extended. Instead, we propose using
the APF to directly bias the nearest node, such that we can
adjust the potential bias depending on the nearby obstacles.

Our APF uses the same quadratic attractive and repulsive
potential fields (Equations 3 & 4) as in prior work [19],
with dgoal as the distance to goal, dobs as the distance from
the obstacle and d∗obs as the maximum effective distance
of the repulsive field. Katt and Krep are the gains for the
attractive and repulsive potentials respectively. We calculate
repulsive fields from all obstacles O with a different Krep

for permeable and impermeable obstacles. The potential at
any point in the configuration space is the sum of attractive
and repulsive potentials.

Uatt = Katt ∗ d2goal (3)

Urep =

{
1
2Krep( 1

dobs
− 1

d∗
obs

)2 dobs ≤ d∗obs
0 dobs > d∗obs

(4)

Utot = Uatt + Urep (5)

Fig. 2: Local APF: qnear is extended more towards qgoal when in free
space and towards the qrand when near obstacles. Fatt and Frep are forces
due to Uatt and Urep respectively. vp is the gradient of Utot.

The potential bias is applied in Line 4 of Algorithm 1 for
extending the nearest node qnear. We calculate the direction
(vp) of the total potential force at qnear. vp is equal to the
negative gradient of the total potential Utot at qnear. We also
calculate the vector in the direction of the random sample
from the nearest node vr = (qrand−qnear)/‖qrand−qnear‖.
To determine the potential biased direction vextend in which
to extend qnear, we take a weighted sum of vr and vp as
shown in Equation 6.

v̂extend = λv̂r + (1− λ)v̂p (6)

λ =
1

βmax(0,Ftotal)
Fattmax

+ 1
(7)

Finally, we extend the nearest node in direction v̂extend
by a fixed distance δ to obtain the new node qnew = qnear +
δv̂extend.

The parameter λ helps to balance between following
the direction of the random sample (exploration) and the

direction of APF force (exploitation). We calculate λ as
inversely proportional to the ratio of the total force Ftotal

at nearest node (which is equal to ~Fatt + ~Frep) and the
maximum attractive force Fattmax

(for scaling). This ensures
that when the node is close to an obstacle or inside a local
minima, Ftotal is ≤ 0, therefore λ = 1. So we completely
follow the random direction vr when in a local minima.
This is specific to the lime picking scenario where the
obstacles (leaves) are close to the goal and hence we want
to explore when near the obstacles. In other scenarios i.e.
Ftotal > 0, the denominator is > 1 and therefore we include
a component of the APF to guide the extension of the tree.

The hyperparameter β > 0 can be tuned to adjust the
weight for the APF direction (Equation 7). The higher the
value of β the larger the weight for extending the tree in the
direction of the potential field gradient vp.

As we adjust λ based on local forces (due to obstacles) we
are able to adaptively search the C-space in a lime picking
task. We bias towards the goal when away from the plant
and explore when near the leaves. This allows us to find
lower-cost solution in a limited number of iterations.

IV. 2-D EXPERIMENTS

In this section, we visualize the behaviour of our proposed
method in a 2-D environment for different values of the cost
of collision with permeable obstacles and potential bias.

Wall environment. Consider the environment shown in
Figure 4 where the start (qs) and goal (qg) configurations
are separated by a wall of permeable obstacles. We choose
this environment to emulate the scenario where the path
to a lime is completely blocked by leaves. Similar to how
the density of foliage varies, the wall has wide and narrow
portions. The shortest path between the start and goal, i.e.,
a straight line, would go through the widest region of the
wall. Thus, it would have the largest number of nodes on
the permeable obstacle and incur a high collision cost. We
want our proposed method to find a path to the goal through
either the top or bottom narrow portions of the wall where
we would incur the least collision cost.

Metric. We compare the average cost of the path to goal
Cpath(qgoal) at 1000, 2500 and 5000 iterations. The cost
of a path τ is equal to the length of the path plus the
incurred collision cost. In our proposed method the total
collision cost incurred for path τ is dependent on the value
of Cperm and the number of nodes ncollision on the path
that are in collision with the permeable obstacle. Therefore,
Cpath(qgoal) = d(τ) + (Cperm · ncollision).

We acknowledge that the metric depends on ncollision for
a given path τ . While this dependency can make the metric
inconsistent, our experiments empirically show that the cost
of the generated paths decreases for increasing number of
iterations. We select this metric for simplicity and we leave
assigning collision costs to the edges at a fixed resolution
for future work.

In the experiments, we set collision cost to a high value
Cperm = 100, since we want to prioritize minimizing

3281

Authorized licensed use limited to: University of Southern California. Downloaded on January 23,2022 at 18:36:08 UTC from IEEE Xplore.  Restrictions apply. 



Algorithm 1000 iterations 2500 iterations 5000 iterations

RRT∗ 971.19 (8.53) 921.31 (9.88) 846.09 (10.99)
APF-RRT∗ (β = 1) 880.43 (9.55) 810.41 (10.54) 726.93 (11.10)
APF-RRT∗ (β = 1.5) 892.42 (8.47) 835.43 (10.21) 775.16 (11.53)
APF-RRT∗ (β = 2) 900.51 (8.07) 846.32 (8.89) 768.36 (11.64)
P-RRT∗ 950.26 (8.74) 874.25 (12.20) 799.83 (13.64)

TABLE I: Mean costs for paths found for our cost-based RRT∗ without potential bias (top row), with potential bias (second, third, fourth rows), and for
our Baseline P-RRT∗ (bottom row) for different numbers of iterations in the 2D environment. The numbers in parentheses indicate standard errors.

Fig. 3: Increasing β increases the effect of potential bias for Katt = 50,
Krep = 500, dobs = 5.0, δ = 3 and Cperm = 100.

collisions. For consistency, we consider the same step size δ
for all experiments and average the costs over 100 trials.

A. Effect of Potential Bias

We now show that our proposed method of biasing the
growth of the tree using an APF helps to find lower-cost
paths in fewer iterations. Table I shows the costs of the
paths found by our cost-based RRT* after 1000, 2500 and
5000 iterations, averaged over 100 trials, and the costs of
the paths when we apply the potential bias with Katt = 50,
Krep = 500 and β = 1. We perform a two-way mixed
ANOVA with the number of iterations as within-subjects
factors and potential bias as the between-subjects factor.
There was no statistically significant interaction between
the number of iterations and the application of potential
bias. The main effect of number of iterations showed a
statistically significant difference in path cost at the different
iterations, (F (2, 396) = 166.985, p < 0.001). Post-hoc
comparisons showed that the cost decreased for increasing
number of iterations. The main effect of group also showed a
statistically significant difference between the two algorithms
(F (1, 198) = 88.103, p < 0.001). Therefore, we can see that
we are able to find lower-cost paths by biasing the tree using
our APF-RRT* approach.

Parameter tuning. Although our proposed method adapts
the potential bias (1 − λ) based on the force due to the
potential field (see Equations 6 & 7), the strength of the
bias is dependent on the hyperparameter β that needs to
be tuned. Figure 3 shows the behaviour of our algorithm
for different values of β. For β = 1 the random direction
has a higher weightage (λ), and we can see that the tree
explores most of the search space only missing out on the
edges near the start state. As we increase β, the weight for
random direction reduces and the growth of the tree is more
biased towards the goal. However, this may or may not lead
to improvements in the path cost depending on the obstacles
in the environment. For β = 1.5, 2 the cost of paths after
1000, 2500 and 5000 iterations are shown in Table I (third

and fourth row), averaged over 100 trials. These path costs
are larger than for β = 1, since increasing the potential bias
too much biases the tree away from the narrow parts of the
wall. Yet since the potential bias is adaptive, the path costs
are still smaller than those without any potential bias.

Setting the cost of permeable obstacles. Fig. 4 shows
example paths found for β = 1.5 and Cperm = 100. We
observe that as the number of iterations increases, APF-RRT*
finds paths through the narrow parts of the wall.

On the other hand, if the cost of collision with the wall
is reduced to 1 (see Figure 5), the path with the least total
cost after 5000 iterations is the shortest length path that goes
through the widest region of the wall. This is because the cost
due to the length of the path dominates the cost incurred due
to collision. Therefore, to minimize collision cost, the cost
of collision with permeable obstacles (Cperm) must be set
higher than the path lengths. For any significantly high value
of collision cost, our proposed method will prioritize finding
a path that incurs the least collision cost, with minimizing
the path length as a secondary objective.

B. Comparison of Potential-Biased RRT* Approaches

Lastly, we compare the performance of our APF approach
to a state-of-the-art potential guided RRT* approach, P-RRT*
[19], that uses APF to bias the random sample. We wish to
show that our proposed method is more effective in finding
low-cost paths than P-RRT*. Therefore, we consider the
approach of using APF to bias the random node as our
Baseline and compare the cost of paths after 5000 iterations.

Implementation. We use the same cost-based approach
and potential field for both methods. The potential Utot at
any configuration is calculated as in Section III-B.

1) Baseline: We shift the random node along the APF
gradient by a distance ∆ for k steps. At each step, the
gradient is re-evaluated at the current configuration of the
random node. We tune ∆ and k to achieve good performance.
2) Proposed APF-RRT*: We apply the potential bias to the
nearest node with β = 1 as in Section IV-A.

Comparison. For ∆ = 0.5 and k = 10, the cost of
paths found by Baseline (P-RRT*) after 1000, 2500 and
5000 iterations, averaged over 100 trials, are shown in
Table I (bottom row). A two-tailed unpaired t-test showed
a significant difference (t(198) = 4.12, p < 0.001) between
the cost of paths for Baseline and our proposed method after
5000 iterations. Thus, our proposed method can effectively
bias the tree to achieve lower cost paths in the same number
of iterations. Table I summarizes the performance of the
tested algorithms.
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Fig. 4: Example paths found by our proposed method at different iterations for Cperm = 100, β = 1.5. Fig. 5: Example path for Cperm = 1

V. ROBOTIC LIME PICKING EXPERIMENTS

In the previous section, we evaluated our proposed method
in a simple environment. We now show how our proposed
method can be used in a robotic lime picking task.

(a) Start configuration (b) Baseline (c) APF-RRT*

Fig. 6: The plant point cloud is shown in green, the lime is yellow, and
the robot in dark grey. (a) We select a grasp pose T that approaches the
lime through the leaves. (b) Path found by Baseline incurs higher collision
cost as it approaches the lime from the front which is blocked by leaves.
(c) APF-RRT* explores near the leaves to find an alternate path from the
side that has less collision with the leaves.

Implementation. The environment is set up with a 6-DOF
Kinova Gen2 robot arm in front of an artificial lime plant
(see Figure 6). We load the plant as a point cloud where
we manually label the penetrable (foliage) and impenetrable
(stem) obstacles. To measure collision with the point cloud,
we use the FCL (Flexible Collision Library) [43]. Since for
high-dimensional problems it may not be possible to map
obstacles to the configuration space, we approximate the
computation of repulsive potentials by taking the shortest
workspace distance between the robot and the point cloud.

In this experiment, we load the lime as a 3D object and
hand-pick an end-effector pose T - that forces the robot to
move through the leaves for grasping the lime.

Evaluation. We first evaluate whether our proposed APF
approach can find lower cost paths to T compared to using no
potential bias. We measure the path costs at 1500 iterations
for Cperm = 100, δ = 0.1 and β = 1.0 and averaged over
100 trials. An unpaired two-tailed t-test showed a significant
decrease (t(182.25) = −6.39, p < 0.001) in the cost of
paths with the proposed method. Therefore, we see that our
proposed method helps to find lower cost paths to limes.

We also compare our proposed method to Baseline (P-
RRT*) as in Section IV-B. We tune the Baseline parameters
to ∆ = 0.1 and k = 2. We again measure the cost of path to
T at 1500 iterations for Cperm = 100, δ = 0.1 and β = 1.0,
and average the cost over 100 trials. An unpaired two-tailed
t-test showed a significant decrease (t(186.07) = 7.63, p <

Algorithm 1500 iterations

RRT∗ 822.75 (50.06)
APF-RRT∗ 422.62 (36.98)
P-RRT∗ 886.77 (47.90)

TABLE II: Mean costs of paths found by our cost-based RRT∗ without
potential bias (top row), with potential bias (second row), and by P-RRT∗

(bottom row) for 1500 iterations in the lime picking simulation. The numbers
in parentheses indicate standard errors.

0.001) in the cost of paths with the proposed method, for
the same Katt and Krep. Table II summarizes these results.

Thus, we see that our proposed method is more effective at
finding lower-cost paths than the Baseline. This is because
our approach of reducing the potential bias when the robot
is near the leaves allows us to explore the plant foliage and
find better paths.

Real-world demonstration. In addition to the simulation
experiments, we also demonstrate the utility of our approach
in a real-world robotic lime picking task (refer to the
supplementary video).

VI. CONCLUSION

Our work focuses on the problem of accounting for
collision with the leaves while picking limes. We consider the
leaves as permeable obstacles, and adapt the RRT* algorithm
by incorporating the collision cost while selecting the best
parent for a new node and rewiring its neighbours. We also
propose using an APF that effectively biases the growth of
the tree to explore areas near the leaves. Our experiments
show that our method can help to reduce collision with the
leaves during lime picking, and can motivate further research
in cost-based planning for robotic fruit harvesting.

A limitation of our method is that it requires setting the
value of Cperm to balance the trade-off between minimizing
the path length and the cost of collision with permeable
obstacles. Moreover, as it is difficult to quantify the damage
caused to the plant foliage [44], we assume the damage to
be proportional to the incurred collision cost. Future work
can look into automatically learning the collision costs for
different penetrable obstacles from demonstration, as well
as extending the notion of permeable obstacles to other
domains, such as tabletop arrangement tasks [45].
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[28] D. Devaurs, T. Siméon, and J. Cortés, “Enhancing the transition-based
rrt to deal with complex cost spaces,” in 2013 IEEE International
Conference on Robotics and Automation. IEEE, 2013, pp. 4120–
4125.

[29] R. Kabutan and T. Nishida, “Motion planning by t-rrt with potential
function for vertical articulated robots,” Electrical Engineering in
Japan, vol. 204, no. 2, pp. 34–43, 2018.

[30] C. M. Dellin, “Completing manipulation tasks efficiently in complex
environments,” 2016.

[31] S. Karaman and E. Frazzoli, “Sampling-based algorithms for optimal
motion planning,” The international journal of robotics research,
vol. 30, no. 7, pp. 846–894, 2011.

[32] I. Noreen, A. Khan, H. Ryu, N. L. Doh, and Z. Habib, “Optimal path
planning in cluttered environment using rrt*-ab,” Intelligent Service
Robotics, vol. 11, no. 1, pp. 41–52, 2018.

[33] W. Wang, H. Gao, Q. Yi, K. Zheng, and T. Gu, “An improved rrt*
path planning algorithm for service robot,” in 2020 IEEE 4th Infor-
mation Technology, Networking, Electronic and Automation Control
Conference (ITNEC), vol. 1. IEEE, 2020, pp. 1824–1828.

[34] H. Mohammed, L. Romdhane, and M. A. Jaradat, “Rrt* n: an efficient
approach to path planning in 3d for static and dynamic environments,”
Advanced Robotics, pp. 1–13, 2020.

[35] A. H. Qureshi, K. F. Iqbal, S. M. Qamar, F. Islam, Y. Ayaz, and
N. Muhammad, “Potential guided directional-rrt* for accelerated mo-
tion planning in cluttered environments,” in 2013 IEEE International
Conference on Mechatronics and Automation. IEEE, 2013, pp. 519–
524.

[36] S. R. Koukuntla, M. Bhat, S. Aggarwal, R. K. Jenamani, and
J. Mukhopadhyay, “Deep learning rooted potential piloted rrt* for ex-
peditious path planning,” in Proceedings of the 2019 4th International
Conference on Automation, Control and Robotics Engineering, 2019,
pp. 1–8.

[37] Z. Tahir, A. H. Qureshi, Y. Ayaz, and R. Nawaz, “Potentially guided
bidirectionalized rrt* for fast optimal path planning in cluttered
environments,” Robotics and Autonomous Systems, vol. 108, pp. 13–
27, 2018.

[38] W. Xinyu, L. Xiaojuan, G. Yong, S. Jiadong, and W. Rui, “Bidirec-
tional potential guided rrt* for motion planning,” IEEE Access, vol. 7,
pp. 95 046–95 057, 2019.

[39] X. Wu, L. Xu, R. Zhen, and X. Wu, “Biased sampling potentially
guided intelligent bidirectional rrt∗ algorithm for uav path planning in
3d environment,” Mathematical Problems in Engineering, vol. 2019.

[40] X. Wang, X. Li, Y. Guan, J. Song, and R. Wang, “Bidirectional
potential guided rrt* for motion planning,” IEEE Access, vol. 7, pp.
95 046–95 057, 2019.

[41] H. Yang, Q. Jia, and W. Zhang, “An environmental potential field based
rrt algorithm for uav path planning,” in 2018 37th Chinese Control
Conference (CCC). IEEE, 2018, pp. 9922–9927.

[42] J. Lee, C. Pippin, and T. Balch, “Cost based planning with rrt in
outdoor environments,” in 2008 IEEE/RSJ International Conference
on Intelligent Robots and Systems. IEEE, 2008, pp. 684–689.

[43] J. Pan, S. Chitta, and D. Manocha, “Fcl: A general purpose library
for collision and proximity queries,” in 2012 IEEE International
Conference on Robotics and Automation. IEEE, 2012, pp. 3859–
3866.

[44] C. W. Bac, E. J. van Henten, J. Hemming, and Y. Edan, “Harvesting
robots for high-value crops: State-of-the-art review and challenges
ahead,” Journal of Field Robotics, vol. 31, no. 6, pp. 888–911, 2014.

[45] D. Batra, A. X. Chang, S. Chernova, A. J. Davison, J. Deng, V. Koltun,
S. Levine, J. Malik, I. Mordatch, R. Mottaghi, et al., “Rearrangement:
A challenge for embodied ai,” arXiv preprint arXiv:2011.01975, 2020.

3284

Authorized licensed use limited to: University of Southern California. Downloaded on January 23,2022 at 18:36:08 UTC from IEEE Xplore.  Restrictions apply. 


