Meeting SLOs in Cross-Platform NFV

Jane Yen*
University of Southern California
yeny@usc.edu

Marcos A. M. Vieira
Universidade Federal de Minas Gerais
mmvieira@dcc.ufmg.br

ABSTRACT

Network Functions (NFs) perform on-path processing of network
traffic. ISPs are deploying NF Virtualization (NFV) with software
NFs run on commodity servers. ISPs aim to ensure that NF chains,
directed acyclic graphs of NFs, do not violate Service Level Objec-
tives (SLOs) promised by the ISP to its customers. To meet SLOs,
NFV systems sometimes leverage on-path hardware (such as pro-
grammable switches and smart NICs) to accelerate NF execution.

Lemur places and executes NF chains across heterogeneous hard-
ware while meeting SLOs. Lemur’s novel placement algorithm
yields an SLO-satisfying NF placement while weighing many con-
straints: hardware memory and processing stages, server cores,
link capacity, NF profiles, and NF chain interactions. Lemur’s meta-
compiler automatically generates code and rules (in P4, Python,
eBPF, C++, and OpenFlow) to stitch cross-platform NF chain execu-
tion while also optimizing resource usage. Our experiments show
that Lemur is alone among competing strategies in meeting SLOs
for canonical NF chains while maximizing marginal throughput
(the traffic rate in excess of the service-level objective).

CCS CONCEPTS

» Networks — Middle boxes / network appliances; Network
components;

KEYWORDS
NFYV, service chain, PISA switch

1 INTRODUCTION

Over the last few years network operators have begun to deploy
virtualized network functions (NFs). These NFs typically perform
packet processing in software on commodity servers. They replace
specialized hardware middleboxes, leveraging cheaper commodity

* Both authors contributed equally to this paper.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

CoNEXT °20, December 1—4, 2020, Barcelona, Spain

© 2020 Copyright held by the owner/author(s). Publication rights licensed to the
Association for Computing Machinery.

ACM ISBN 978-1-4503-7948-9/20/12...$15.00
https://doi.org/10.1145/3386367.3431292

Jianfeng Wang*
University of Southern California
jlanfenw@usc.edu

Ramesh Govindan
University of Southern California
ramesh@usc.edu

509

Sucha Supittayapornpong
Vidyasirimedhi Institute of Science
and Technology
sucha.s@vistec.ac.th

Barath Raghavan
University of Southern California
barathra@usc.edu

servers and cloud-like service management. They also permit flexi-
ble orchestration of the data plane by chaining together NFs (into
NF chains) to meet operator needs. An important large-footprint
use case is a rack-scale deployment of servers to run NFs for traf-
fic ingressing or egressing a telecom central office, an ISP Point
of Presence (PoP), or an enterprise border. This is the setting we
consider in this paper.
Industry interest has prompted two threads of NFV work:

Software NFs. One thread has focused on programming and or-
chestrating NFs and achieving elastic scaling (e.g., [12, 32, 33]), and
improving their performance (e.g., [2, 40, 41]). However, a key factor
in practical deployments, the ability to meet service-level objec-
tives (SLOs) for traffic processed by an NF chain, has received less
attention [41]. Consider an ISP that serves residential or enterprise
customers. It may want to apply security or isolation policies on
traffic from these customers using NF chains. In doing so, however,
the ISP runs the risk of violating traffic SLOs that it established
with its customers because the NFs add processing overhead [9].
In discussions with ISPs, we have found that such SLOs usually
have three required components: a minimum rate requirement on
aggregate traffic processed by an NF chain, a maximum rate bound
that limits bursts, and a maximum delay imposed by the NF chain.
Accompanying these SLOs is a pricing model that sets a fixed price
for the minimum rate, and a usage-sensitive price for traffic above
the minimum rate.

Hardware acceleration. A second thread stems from the grow-
ing realization that custom-hardware middleboxes, while inflexible,
delivered greater predictability and performance than software-
based NFs. In response, researchers and industry alike have looked
to leverage hardware acceleration (in the form of Protocol Inde-
pendent Switch Architecture or PISA hardware [15, 27], Smart
NICs [10, 24], GPUs [8, 36], and Network FPGAs [6, 26]). This
line of work explores hardware acceleration on an NF-by-NF ba-
sis, yielding a suite of useful, but piecemeal, higher-performance
implementations.

Hardware acceleration is particularly important in our setting
as server scaling has its limits in a rack-scale deployment where
space and power considerations are important. For example, the
32-port Barefoot Tofino-based PISA switch [4] we use, which has
3.2 Tbps of capacity, consumes about 450 W, comparable to a 1U
two-socket Intel Xeon-based server. However, due to limitations of
the P4 programming model and limited hardware resources, not all
NFs can run on switches.

https://doi.org/10.1145/3386367.3431292
https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://www.acm.org/publications/policies/artifact-review-and-badging-current

Leveraging hardware acceleration through manual configuration
has always been possible, but ISPs that have taken this approach
have suffered from the high management overhead such a manual
approach imposes.

In addition, we found when working on NFV in industry that
application of generic cloud computing platforms (e.g., OpenStack,
Kubernetes, etc.) aided in automation but yielded abysmal perfor-
mance. On the other hand, hand-tuned NFV deployments were
difficult to optimize and maintain. Neither provided the requisite
SLO guarantees. Lemur aims to get the best of both worlds, automa-
tion and highly-tuned performance, while meeting SLOs.

Goal. Given multiple NF chains and their associated SLOs, we seek
to automatically place, configure, and execute multiple chains across
heterogeneous hardware such that: (a) each NF chain receives at least
its minimum rate, and (b) the total marginal rate (the rate above
the minimum which each chain can burst) is maximized, which
maximizes revenue for the ISP. Automatic configuration means: (a)
decide where an NF should run (in software, on a PISA or OpenFlow
switch, or in a SmartNIC), and the degree of NF scale-out required
(using multiple cores) to achieve the SLOs, and (b) execute each
NF chain across hardware with little operator intervention. In doing
so, we must leverage all hardware made available on-path, thereby
providing operational flexibility.

Lemur’s goal is not to provide a unified programming language
for heterogeneous platforms. Instead, it respects existing hardware
offload efforts, and embodies a practical approach to generating
appropriate NF placement.

Automatic configuration poses several challenges. How do we
specify NF chains in a manner amenable to analysis for acceleration
and scaling decisions, and compilation for execution? How do we
determine which hardware element (CPU, PISA switch, smart NIC,
OpenFlow switch) each NF in the chain should run on? How do we
scale partial NF chains by replicating them across multiple cores
in order to meet SLOs? How do we respect constraints imposed by
hardware accelerators (e.g., pipeline stages on PISA switches)? How
do we accommodate link capacity constraints between switches and
servers? How do we work around limitations in the programming
and execution models used by hardware accelerators?

Lemur: Approach and Contributions. In this paper, we present
Lemur, a system to address these challenges. Lemur takes as in-
put a high-level description of multiple NF chain DAGs and their
associated SLOs. Lemur’s output is a placement configuration for
each NF chain along with coordination code that ensures that the
NF executes on the appropriate hardware element specified by the
placement.

Contributions. First, Lemur provides Placer, which determines
NF placement and provisioning, and addresses the several compet-
ing challenges identified above: determining hardware acceleration,
deciding the scale out for NFs on multi-core systems, respecting
link capacities, and hardware-specific constraints (§2). Our work
includes an oft-ignored element of performance prediction, run-to-
completion NF execution, as opposed to cross-core execution. A
MILP formulation can address a scalable run-to-completion formula-
tion while meeting SLO requirements and link-capacity constraints,
but off-the-shelf solvers cannot determine if a set of NF chains

510

respects hardware constraints, since that requires actually invoking
the hardware-specific compiler. An alternative, optimal approach
(§3) leverages the structure of the problem to (a) enumerate place-
ments of NFs on different hardware elements, (b) use resource and
performance profiles of each NF on each hardware element to deter-
mine how to scale out server-placed NFs to multiple cores in each
placement, (c) determine which placements maximize the aggre-
gate marginal throughput while satisfying link capacity constraints,
and (d) select a placement that respects hardware limitations. Enu-
merating placements is computationally expensive, so we develop
(§3) a heuristic capable of near-optimal performance with very low
placement delay. Our placement algorithm addresses the issue that
today’s PISA switches do not expose an inexpensive API to check
the feasibility of placements.

Second, Lemur provides a meta-compiler that, given NF imple-
mentations, produces low-overhead coordination code and tables
to ensure that the NF chain executes as determined by Placer. The
meta-compiler automatically (§4) reasons about DAGs in NF chains,
and generates code for function chaining. A key architectural nov-
elty in Lemur’s meta-compiler is the use of a top-of-the-rack (ToR)
PISA switch as a coordinator (in addition to acting as an NF accelera-
tor), which shares fate and improves performance. Additionally, our
meta-compiler overcomes another limitation of PISA switches: the
programming model of these switches does not permit reasoning
about modular NFs. Recent work [37] has explored language sup-
port for modular and composable P4 programs; in contrast, Lemur
targets minimal changes to P4 to support NF composition.

In our evaluations, we use canonical NF chains [21], which in our
experience both in industry and research reflect actual deployments.
For these, Lemur outperforms alternative approaches. It finds fea-
sible placements in all our experiments while other approaches
find feasible placements in about 17-76% of the cases. Lemur also
obtains a maximum marginal throughput difference over compet-
ing approaches of more than 50% of the link capacity across our
experiments. We demonstrate that Lemur’s meta-compiler can re-
duce manual labor: nearly 30% of code in Lemur is auto-generated.
Finally, Lemur’s heuristic placement algorithm can generate near-
optimal placements in a little over three seconds. We have open
sourced our implementation and MILP formulation.!

2 LEMUR: OVERVIEW

Overview. The input to Lemur (Figure 1) is an NF chain specification
that, for each chain, describes which traffic aggregates to apply,
the DAG of NFs, and the corresponding SLO. The Placer consumes
the specs and determines, for each NF in every NF chain, whether
Lemur should execute that NF in on-path hardware, and if so, on
which element. If Placer decides to run the NF on a server it also
determines how many cores to allocate to the NF. The resulting
placement configuration of the NF chains is guaranteed to satisfy
the specified SLOs.

Given the specification, and the Placer’s placement configuration,
the meta-compiler parses the specification, selects the NF imple-
mentation for the hardware target identified by the configuration,
and automatically generates code to route traffic between NFs in
the NF chain. For example, traffic may first ingress the ISP at the

!https://github.com/USC-NSL/Lemur

i NF chain specification
Placer predicts throughput
Lemur
l Placer
Placement configuration
Meta-Compiler parses
placement configuration Lemur

T Meta-Compiler

Platform Code ll

NF-chain execution

Figure 1: Overview of Lemur’s design.

PISA switch, then traverse NFs on a server and a smart NIC. Traffic
may bounce back to an NF on the PISA switch before returning
to a server (which may be necessary to satisfy SLOs as we discuss
later), and return again to the switch before egressing the ISP.

Specifying NF chains. Lemur provides a natural and abstract
means for operators to specify NF chains. Inspired by BESS [2],
our specification is not novel, but is critical for enabling automated
placement and execution. To use hardware middleboxes typically
required an operator to manually configure pipelines, and a core
NFV aim was to automate such work. However, Tier-1 operators,
even for non-hardware accelerated settings (such as VM-based NFs
using SR-IOV) do manual setup, and we have learned from them
that they frequently leave stranded resources due to configuration
complexity. In Lemur, even though it supports multiple hardware
platforms, NF chain configuration is as straightforward as with
software-only NFV.

A Lemur user (eg., an ISP operator) specifies NF chains
using a dataflow language, where the nodes represent NFs and
the edges represent packet flow between NFs. For example,
ACL -> Encryption —> Forward specifies an NF chain in which
ACL, Encryption, and Forward are all NF names. This NF chain
represents incoming packets filtered by an access control list (ACL)
NF, encrypted by an encryption NF, and finally emitted out an
appropriate port based on MAC address-based forwarding.

An NF can have parameters. For example, the ACL can have an
associated rule:

ACL(rules=[{'dst_ip':'10.0.0.0/8', 'drop': False}])

to drop packets other than those destined to 10.0.0.0/8. Also, an
NF chain may specify conditional execution through branching,
like:

ACL -> [{'vlan_tag':

0x1, Encryption}] —-> Forward

which encrypts packets matching a specific vlan tag.

This specification is high-level and declarative. NFs in NF chain
specifications use a predefined but extensible vocabulary. They do
not specify where or how an NF executes. For example, Lemur users
would not need to know whether an act. NF runs on hardware

511

[Use Case H tmin [tmax [Description

Bulk 0 0 Best effort
Metered bulk 0 a Best effort, capped at &
Virtual pipe a a Exactly o guaranteed
Elastic pipe a I3 At least o w/ bursts up to f§
Infinite pipe a) At least o

Table 1: Lemur’s SLOs capture key operator use cases.

accelerators or on x86 servers. Indeed, for one NF chain, Lemur
might decide to configure an acrL on a PISA switch, but for another
in software.

Each chain processes traffic from one or more traffic aggregates.
An aggregate specifies a combination of flow 5-tuple values (source
and destination IP addresses and port numbers, as well as protocol
number); in our setting, an aggregate may represent traffic from a
customer, for example.

Specifying performance objectives. Finally, for each traffic ag-
gregate, the operator specifies the SLO that must be satisfied by
the associated NF chain. We have derived Lemur’s SLO specifica-
tions from discussions with operators; the specifications are simple
yet capture important use cases. For each NF chain and traffic ag-
gregate, the operator can specify: a min throughput tyj,, a max
throughput tyax, and a max delay dmax. Lemur must provision
for the NF chain to achieve at least ti, throughput with at most
dmax delay. Operators also permit traffic to burst up to tmax. These
bounds also determine pricing: operators often charge a fixed price
for tmin, with use-based pricing above that rate; this is contractual
with customers and must not be violated by NF chains that it ap-
plies to customer traffic in order, for example, to enforce its own
security policies. Finally, because traffic usage beyond ty;, gener-
ates revenue, Lemur attempts to maximize the aggregate marginal
throughput (the traffic rate in excess of tpiy).

Our simple SLO spec can capture several key use cases (Table 1).
Large carriers often sell enterprises and smaller operators virtual
and/or elastic pipes. Residential traffic, on the other hand, is typi-
cally advertised as an elastic pipe but given metered bulk in reality.
Bulk is used for low-priority traffic that consumes excess resources
after other demands are met. Finally, customers with bursty demand
and a willingness to pay for any level of usage can select infinite
pipes (which are of course limited by hardware and interconnects).

3 THE PLACER

Placement of NFs is a key problem in NFV. Prior work aimed for uni-
fied orchestration and execution within one platform (e.g., software),
and on monolithic NFs. Lemur’s Placer, faces harder challenges: it
must not only perform NF placement with limited resources, but do
so while avoiding SLO violations, and while accommodating mul-
tiple hardware categories (e.g., PISA switches, smart NICs) which
have not only different resources but different types of resources.

3.1 The Placement Problem

The input to Placer is a collection of NF chains, and associated
SLOs (e.g., tmin and tmax for each chain). In addition, Placer is also
given the underlying topology consisting of a single PISA switch
connected to several servers each of which may have one or more
attached smart NICs.

Placer produces a placement that specifies whether each NF in
an NF chain should run on the PISA switch, a smart NIC (and which
smart NIC), OpenFlow switch, or a server (and which server and
config). If it places an NF on a server, Placer also specifies NF core
allocation. Given NUMA in modern servers, and CPU socket-NIC
association, Placer also specifies the NIC to which the chain is
assigned to the chain.

A placement is to be feasible if the following conditions hold:
(a) each NF chain receives at least ty;n; (b) the NFs allocated to
the PISA switch collectively fit into the switch; (c) the placement
respects the server core counts of every server; (d) aggregate traffic
resulting from the placement does not exceed the capacity of any
network link.

Placer aims to generate a feasible placement with maximal ag-
gregate marginal throughput: the difference between a chain’s
estimated throughput and its tyi,. To check whether an NF chain
meets its SLO, Placer estimates the throughput of each chain [16].
As discussed in §2, this objective is natural in our setting because
it maximizes revenue for the ISP.?

Challenges. Several aspects make this placement problem hard.
First, some NFs can be placed on servers, switches, or smart NICs,
while others have limited placement options (e.g., PISA switches
cannot currently perform payload encryption). Second, different
hardware resources have different constraints. PISA switches can
process NFs at line rate, but have limited pipeline stages and mem-
ory. Servers are less constrained and more general, but are slower.
Smart NICs occupy a midpoint. Beyond placement, Placer has to
meet SLOs. To do this, it needs to estimate the throughput achieved
by an NF chain in a given placement. This throughput is primarily
constrained by the processing on servers and smart NICs (since
PISA switches process at line rate).

When it places NFs on servers, Placer must also minimize over-
head in NF execution, which will allow efficient packing of NFs into
servers. Consider two successive NFs A and B in a chain: Placer
must decide, while meeting SLOs, whether to place these on the
same core (to avoid copying costs), or on different cores (to permit
parallelism) [46]. To meet the SLO, it may be necessary to replicate
A across several cores.

Alternative Approaches. For concreteness, consider two straw-
man approaches. The first places an NF on the PISA switch when-
ever a switch implementation exists. This may be infeasible depend-
ing on the chain, since it may exceed the number of switch stages.
The second, at the other end of the spectrum, places an NF on a
server if a software version exists, which may be infeasible because
there may be too few cores to satisfy ty,i for one or more chains.
Prior work has considered placing VM-based NFs on server cores
while satisfying SLOs, a mixed integer programming problem [22,
28] solved either using heuristics [22] or with an MILP solver [28].
Other work has explored minimum bounce placements [32]. How-
ever, in this context, such bounces between nodes may be unavoid-
able. Consider a chain with five NFs A-E where B and D only have
software implementations, A and E only switch implementations,
but C can be executed on either. A minimum-bounce placement

2More fine-grained objectives may also make sense in our setting; an ISP may wish to
allocate higher marginal rates to certain customers, or ensure proportional fairness in
rate allocation. We leave this to future work.

512

would force server placement. This may be sub-optimal and fail to
meet tyin: another NF chain could use the core(s) allocated to C to
achieve a feasible solution, or one with higher marginal throughput.

3.2 The Placement Algorithm
Lemur’s placement algorithm overcomes these challenges.

Profiling and Estimated Throughput. To estimate the through-
put of an NF chain, Placer precomputes profiles for each NF on a
server and/or smart NIC. NF B’s profile is the CPU cycle count ¢ to
execute it.> Given the CPU clock rate f, the estimated rate for B is

%. Placer might allocate k cores to B, in which case its rate is k%.
If an NF chain placement has multiple server (or smart NIC) placed
NFs, the estimated rate of the NF chain is the minimum of all the
per-NF (or, per NF sub-group, as discussed below) estimated rates.*

The cycle count of an NF may be a function of NF state or traffic.
For example, acL processing may depend on table sizes; we profile
cycle counts for different sizes and use a linear model to predict the
processing costs. In other cases, such as NAT, we may not know the
size of the state a priori, in which case we aim to compute a worst-
case cycle count. Finally, for some NFs such as bedup, the cycle
count might depend on the degree of redundancy in the packet; in
this case we compute a worst-case cycle count, and plan to explore
better profiling techniques in the future. Placer decouples profiling
from placement, so can directly leverage improvements in profiling
(such as based on operator-specific knowledge).

Brute-force Placement. Placement lends itself to an optimization
formulation. We cast the placement problem as an MILP, but for
one key component: it is hard to estimate a priori the number of
PISA switch stages used by a placement because the PISA compiler
(for Barefoot’s Tofino [29]) performs stage packing. We could have
modeled the PISA switch placement conservatively [14], but this
would have resulted in stranded resources. An alternative is brute-
force placement, which: (a) enumerates placement patterns, (b)
searches through core allocations for each pattern, and (c) finds the
max marginal throughput for a pattern and core allocation.

Enumerating Placement Patterns. Brute-force placement first
enumerates patterns of all possible NF placements across available
hardware for the given DAG. For example, for a chain a->B->c->D,
one possible placement is A on the PISA switch, B and C on a server,
and D back on the PISA switch. Another placement might place D
on a smart NIC. The space of patterns is large but constrained by
the fact that not all NFs can run on all platforms: e.g., a Dedup NF
that de-duplicates packet payloads can only run on a server.

Dealing with branches in chains. In enumerating placement
patterns for NF chains with branches, we decompose such chains
into linear chains. Thus, if a chain branches from NF X to two NFs
Y and Z, and then merges back into an NF W, we decompose these
into two chains x->y->w and x->z->w. Here we assume knowledge
of traffic splits across the two chains (in our discussions, operators

3We consider eBPF [42]-capable NICs that can be profiled this way.

4 As ResQ [41] shows, there are subtle NF performance interactions in software that
must be accounted for, such as cache effects; ResQ is complementary to Lemur and
could be used to improve our estimation [41].

estimate these using historical measurements). Later we merge the
throughput estimates for X and W.

Searching through Core Allocations. For each pattern, brute-
force placement must search all possible core allocations for server
NFs because, to meet the SLO or to increase the aggregate marginal
throughput, we may need to allocate multiple cores to an NF and
split traffic across the instances. Currently we (a) coalesce successive
server NFs using run-to-completion (discussed below), and (b) do not
replicate stateful NFs or those where a branch or a merge occurs.

In our example above, if B and C are assigned to a server, we
run them to completion on one core (i.e., a packet batch is fully
processed by both NFs before B starts processing the next batch).
In this case, we say B and C are part of a single subgroup, and, in
making core allocation decisions, we treat a subgroup as a single
entity. Subgrouping has two advantages. First, run-to-completion
is fast because it permits zero-copy packet transfers between NFs,
has no scheduling overhead, and has no cross-core communication.
Second, subgrouping involves a search of fewer patterns and fewer
core allocations.

Subgrouping and run-to-completion are not always optimal. Con-
sider two NFs B and C (where C comes after B in an NF chain) each
with a cycle cost of x. The throughput of the subgroup BC is %
Instead of sub-grouping, one can run B and C on separate cores;

the throughput for the two NFs would be % where § is the
cross-core or cross-socket cost. Depending on the relative values
of x and §, this throughput can be higher than run-to-completion.
However, modeling cross-core and cross-socket costs is complex,
especially considering cache effects [41]; we profile conservatively
(§5.3), leaving more sophisticated profiling to future work.

Replicating stateful and branch/merge NFs. Brute-force
placement does not replicate any subgroup containing one or
more stateful NFs even though it may be possible to do so. For
example, NAT can be replicated by partitioning the port space to
minimize cross-core communication. Our current implementation
does not do this yet in part because automatically generating this
replication in a meta-compiler (§4) is difficult, and we have left this
to future work. We plan to leverage work on stateful NF scaling,
such as S6 [44]. Meta-compilation complexity also motivates us to
avoid replicating NFs where branching or merging occurs.

Finding Maximum Marginal Throughput. For a given place-
ment pattern and a given core allocation, we can find the maximum
throughput achievable for each NF chain from our cycle cost pro-
files. The throughput is constrained either by a server subgroup or
a smart NIC NF. We compute the NF chain’s estimated throughput,
as discussed above, as the minimum of the throughputs of all NF
subgroups or smart NIC NFs in the chain.

However, the sum of NF chain rates can overwhelm a NIC, so
we must find assignments for NF chains that respect NIC capacities
while maximizing aggregate marginal throughput. This problem
is complex when two subgroups in an NF chain may be placed
on different servers, or different NIC interfaces on a server with
multiple NICs. Brute-force placement uses a linear program to
determine the max marginal throughput.

Putting it all together. Brute-force placement lists possible place-
ments (where a placement includes a pattern, a core allocation for

513

each subgroup, and the rates assigned to NF chains), ordered by
decreasing maximum marginal throughput. We then iteratively call
a PISA compiler to find the highest-ranked placement within the
switch’s stage constraints.

A Fast, Scalable Heuristic. Brute-force placement has two ex-
pensive pieces: enumerating placements and core allocations, and
compiling placements on a PISA switch’s compiler. Next we de-
scribe a low-complexity heuristic that reduces the cost of both of
these and is several orders of magnitude faster than brute-force
placement. Unless otherwise indicated, Placer uses this heuristic,
which has three steps.

1. Check stage constraints. Placer greedily places as many
NFs on the PISA switch as possible. If this placement exceeds the
switch’s stages, it iteratively moves the lowest cycle cost NF away
from the switch until it finds a placement that respects the stage’s
constraints. The rationale behind removing the lowest cycle cost NF
first is: since the PISA switch guarantees line-rate for any chain that
fits the switch resources, if a high cost NF and a low cost NF use the
same number of stages, it is always better to remove the low-cost
NF (since it is more likely that we can pack this on the server and
satisfy SLOs). Thus, unlike brute-force placement, Placer checks
the switch stage constraint first, which more effectively prunes
the search space. The output of this step is a baseline placement.
The next step may remove NFs assigned to the PISA switch in the
baseline placement to explore alternative placements (as described
below); however, it never adds an NF to a PISA switch, guaranteeing
that the final placement always respects the switch constraint.

2. Coalesce sub-groups. Even with the baseline placement, the
search space is still large: we can offload each PISA switch NF
(or combinations thereof) to the server to see if these result in
higher marginal throughputs. Each such offload presents an op-
portunity to coalesce sub-groups. To see why, consider a chain
{A->B}->C->{D->E} where the {} denote server-placed subgroups.
In this example, c is a PISA switch NF. Moving c to the server en-
ables coalescing the two sub-groups into a single sub-group, freeing
up a core that can help make another NF chain feasible, or increase
overall marginal throughput.

To make an optimal coalescing decision, Placer needs to consider
core allocation, but this can involve an expensive search since other
factors (such as NIC link capacity) constrain core allocation. Thus
it decouples coalescing from core allocation and uses three simple
rules to coalesce sub-groups.

Consider two subgroups {a->B} and {p->E}. Placer coalesces
these only if the resulting marginal throughput from allocating two
cores to the coalesced sub-group is higher than allocating one core
to each sub-group. We call this strict coalescing. However, there
are other situations in which coalescing might be beneficial (with
appropriate core allocation) because they can free up cores for use
by other NF chains, and we consider two. In aggressive coalescing,
Placer coalesces two subgroups as long as the SLO is not violated;
this is aggressive because it can potentially backfire and result
in lower overall marginal throughput. In conservative coalescing,
Placer coalesces two sub-groups only if the chain’s throughput does
not decrease.

The output of this step is three different placements: the base-
line placement, an aggressive placement which applies strict and
aggressive coalescing, and a conservative placement which applies
strict and conservative coalescing.

3. Maximize marginal throughputs. For each of the three
placements, Placer generates core allocations, runs the LP to com-
pute marginal throughput under link constraints, and picks the
configuration with the highest marginal throughput.

Dynamics. The placement algorithm runs when an NF chain con-
fig changes: e.g., when an operator adds or removes an NF from a
chain, or changes an SLO, or updates the traffic aggregate associ-
ated with a chain. As we show in §5, Placer is fast enough to handle
these dynamics. However, these kinds of changes need additional
run-time support to dynamically reconfigure NF chains without im-
pacting traffic; such support is usually found in NFV orchestration
frameworks, into which we expect Lemur to be integrated.

4 THE META-COMPILER

Lemur’s meta-compiler integrates many different execution
platforms, each with its own execution model, language(s), and
toolchains. It takes as input the NF chain specifications (§2), and
automates the entire process of generating and running code for
all NF chains. To do this, it parses the NF chain specifications, and
develops an intermediate graph representation of all the NFs. In
this NF-graph, nodes are NFs, links represent data-flows, and each
node is associated with attributes that govern placement and other
information. The meta-compiler then feeds the NF-graph to Placer
to find the highest marginal throughput placement. Using this
placement, the meta-compiler synthesizes (a) NF chain routing and
(b) NF code generation. These synthesis tasks are aided by the
meta-compiler’s library of NF implementations.

4.1 Synthesizing NF Chain Routing

Given a placement, traffic that matches an NF chain must traverse
each of its NFs, across different platforms in the correct order. Lemur
must synthesize routing configurations to deliver packets from each
NF to the next NF in the NF chain, which may be on a different
platform. To do this, we use the Network Service Header (NSH) [35],
which tags packets with a service path index (SPI) and service ID
(SI); a service path is equivalent to a linear NF chain, and a service
ID helps sequence execution of NFs within a single chain.

The meta-compiler’s first step, after placement, is to assign SPI
and SI values nodes in the NF-graph. Then it needs to synthesize
code for routing between NFs in each chain. For this, the meta-
compiler pre-defines implementations of two modules for each
platform-encap and decap—which respectively add and remove
NSH or its equivalent. Having determined the SPI and SI values,
the meta-compiler must generate code for each platform to affect
the routing between NFs. To minimize encap and decap overhead,
Lemur concatenates NFs in a single service path and only generates
encap and decap modules at the head and tail of that service path.

For example, consider an NF chain a->B->c->p, where B and C
are on a server and A and D are on the switch. The meta-compiler
inserts code to set the initial SPI/SI values in the switch, then inserts
code after NF A to forward the packet to the server. On the server,

514

B and C run to completion, but the meta-compiler must insert code
to increment the SI value, and, after C’s completion, code to route
the packet back to the switch. Finally, it must add code to strip NSH
after D. This example shows a key part of Lemur’s design: here, the
PISA switch coordinates execution of the NF chain via routing. This
is natural as all traffic enters/exits the PISA switch ToR.

4.2 Code Generation

The meta-compiler generates code from the built-in NF implemen-
tation library. For example, the library might have an acwt imple-
mentation for the PISA switch and an x86 server, and a bedup im-
plementation only for an x86 server (because PISA switches cannot
implement Dedup). Using these, the meta-compiler can generate
code for the NF chain acL->Dedup as follows: if act is placed on
the PISA switch, it generates the appropriate routing PISA code as
above, prepends it to acL’s PISA implementation, and performs sim-
ilar steps for the x86 Dedup code. This is conceptually easy but com-
plicated by the platforms: a Barefoot Tofino-based programmable
switch and x86 commodity servers running BESS [2].7

Synthesizing P4 NF chains. PISA switches are programmed using
P4 [3] with monolithic programs for packet processing. However
Lemur requires composability of NF chains in P4. To enable this,
programmers must be able to write standalone P4 NFs that can then
be composed into NF chains. Rather than invent a new language, we
minimally extended P4’s syntax to allow users to specify standalone
NFs. We also developed an associated pre-processor to the meta-
compiler that parses these extensions. The following paragraphs
describe our extensions to the P4 syntax, and the pre-processor.

Defining standalone P4 NFs. In Lemur, NF-developers can
write a standalone P4 NF in much the same way as they write
a regular P4 program: by defining headers, per-packet metadata,
header parser specification, match/action tables, and control flow
of the packet processing pipeline. Lemur makes small changes in
the way programmers specify headers, metadata and parsers.

For each P4 NF to be standalone, the NF developer cannot know
the actions a packet will be subject to after the NF is processed.
Lemur assumes that the NF will pass all packets to the next NF
in the chain. However, the programmer can set the drop_flag in
metadata to ensure that a packet is not passed to the next NF. This
is useful in implementing firewalls.

One key feature of P4 is that it is protocol-independent. When
Lemur aims to unify standalone P4 NFs, it must ensure agreement
on how to parse headers. Hence for each P4 NF, programmers must
specify headers and header layouts, and then specify how these
headers are parsed. An NF-developer may not know a priori all
the headers and their associated layouts; this is only known after
placement is finalized. So an NF-developer must specify headers
and parsers in a manner amenable to composability: the meta-
compiler must be able to combine header parsers of P4 NFs when
generating code for a set of NF chains. To achieve this, Lemur
provides an interface for NF-developers to describe headers and
parsers. It provides a library of predefined headers (along with their
layouts). NF-developers may extend this library. When writing a

5The meta-compiler supports eBPF on Netronome’s Agilio CX 1x40 Gbps SmartNIC;
the code generation technique described above suffices.

P4 NF, they simply list the headers they wish to use, and describe
an NF-local parser via a simple graph definition language.

Composing P4 NFs into chains. After Placer runs, Lemur reads
in the P4 NF modules and merges them together as a single uni-
fied P4 program. In addition to name mangling P4 NFs to ensure
uniqueness, and eliminating redundant headers, the meta-compiler
implements two key algorithms.

The first algorithm auto-generates the unified parser from the
NF-local parsers, specified by the NF developer, by merging the
NF-local parsers: it takes the union of the next header choices for
each unique header in a parse tree. The meta-compiler then auto-
generates the headers and the parser definitions, using layouts from
the header library (see §A.2.1).

The meta-compiler must also assemble the per-NF tables and
actions into a global sequence of tables and actions consistent with
dependencies between NFs in the NF chain definitions. One naive
solution is to generate code for NFs in a topological-sort order, and
place a check at the beginning of each NF. However, P4 programs
generated in this manner can waste many switch stages. Our ex-
perience with resource mappings for many compiled P4 programs
points to two important facts that must be considered when gen-
erating a unified P4 pipeline: (1) (no loop) a match/action table
cannot be revisited in the pipeline; consider a merge at the end of a
branch, where NFs A and B merge into C. The tables from C must
be applied in the unified pipeline exactly once, and after all tables
from A and B. (2) two match/action tables cannot be packed on the
same stage if they have dependencies between them. Therefore, the
challenge is to convert a DAG of NFs (with many branching and
merging points) into a tree struct that must respect all dependen-
cies in the original NF DAG and must not introduce unnecessary
dependencies between NFs. The meta-compiler statically analyzes
the NF-graph for these dependencies and generates tables with this
property (details in §A.2.2).

Resource-Aware Code Generation. The generated NF code must
conserve constrained resources on our platforms: PISA pipeline
stages, and server cores.

Minimizing PISA switch stage usage. Of the various con-
straints (DRAM, TCAM, matching bits, stages), the number of stages
is most constraining (it is the constraint that is easiest to violate).
As previous studies [17] have shown, in a P4 switch table dependen-
cies can rapidly consume available stages. Therefore, we optimized
switch stage usage by eliminating table dependencies ([17] uses sim-
ilar techniques for standard P4 programs). These optimizations use
a static analysis of the NF chain graph, similar to the one described
above, and execute the following assertions: (a) Do not generate
code to insert an NSH header if a chain is placed by Placer entirely
on the PISA switch; (b) Instead of updating the SI values after each
P4 NF, update it once at the end of a chain of sequential NFs; (c)
To steer packets returning from the server to the correct next NF
in the chain, incorporate the steering into the first switch stage
which also steers previously unseen packets; and (d) Allow the P4
compiler to pack parallel branches into the same set of switch stages

515

l Chain [Specification

Chain 1 | BPF->Subchain 7->BPF->UrlFilter—>Subchain 8
N\, Subchain 8 \J Subchain 8
Chain 2 | Encrypt->LB->3xNAT (branched) ->IPv4Fwd
Chain 3 | Dedup->ACL->Limiter—>LB->IPv4Fwd
Chain 4 | Dedup->ACL->Monitor->Tunnel->BPF—>
3xSubchain 6 (branched) —>IPv4Fwd
Chain 5 | ACL->UrlFilter—>Fast Encrypt—>IPv4Fwd
Subchain 6 | LB->Limiter->ACL
Subchain 7 | ACL->Limiter
Subchain 8 | Detunnel->Encrypt—>IPv4Fwd

Table 2: Five canonical NF chains used for evaluation.

by expressing the exclusivity among these branches explicitly in
the generated P4 code.

Codegen for BESS packet steering and NF scheduling. BESS
is a DPDK-based software switch that supports standalone NFs and
NF-chaining, so we did not need to extend the BESS programming
model (see also §A.1.1).

Placer determines NF run-to-completion subgroups and how
many cores are allocated per subgroup. The meta-compiler must
generate code to demultiplex packets to the right subgroup and
further the right subgroup instance. This demultiplexer module
also decapsulates NSH headers because BESS NF implementations
aren’t aware of this header; an auto-generated multiplexer module
at the end re-inserts this header. In Lemur, the demultiplexer runs
on a single core, pulls packets from the NIC, and steers packets to
the subgroup (§A.1.2). This incurs cross-core communication costs;
in future work we intend to generate PISA switch code to tag and
steer packets to specific cores as in Metron [18].

Finally, the meta-compiler uses BESS’s scheduler, which supports
hierarchical scheduling policies via a per-core tree with NF leaves
and policy interior nodes. Given subgroups and core allocations,
the meta-compiler specifies NF scheduling. Placer might choose to
allocate multiple subgroups to the same core, and the meta-compiler
generates code to schedule these subgroups round-robin. We also
use the scheduler to enforce ty,y. (More discussions in §A.1.3)

5 EVALUATION

We compare Lemur against several other alternatives, and illustrate
features of Lemur’s design.

5.1 Methodology

Implementation. Our Lemur implementation has three key pieces:
1) NF implementations in C, C++, and P4, 2) the Placer, and 3) the
meta-compiler. Our NFs require 1396 lines of C++ (new BESS mod-
ules), 412 lines of C (eBPF code to run on the SmartNIC), and 1273
lines of P4 (P4 libraries). The Placer consists of 841 lines of Python.
The meta-compiler consists of 6450 lines of Python composed of
2564 lines for the parser core, 312 lines for the BESS code generator,
3142 lines for the P4 code generator, 434 lines for OpenFlow, and
120 lines of ANTLR to parse NF chain specifications.

Experiment setup. Most of our experiments use two servers con-
nected to a PISA switch functioning as a ToR. Both servers run BESS,
one as a traffic generator and the other for NFs. Our PISA hardware

NF [Spec [C++ [P4 | eBPF | OF |
Encrypt | 128-bit AES-CBC .
Decrypt | 128-bit AES-CBC .
Fast Enc. | 128-bit Chacha . .
Dedup | Network RE [1] .
Tunnel | Push VLAN tag
Detunnel | Pop VLAN tag
IPv4Fwd | IP Address match
Limiter | Token bucket .
Url Filter | HTML Filter .
Monitor | Per-flow statistics . .
NAT | Carrier-grade NAT . .
LB | Layer-4 load balance . . .
Match | Flexible BPF Match . . .
ACL | ACL on src/dst fields

Table 3: NFs and available placement choices. We artificially
limit IPv4Fwd as P4-only for the sake of evaluation.

is an Edgecore 100BF-32X with a Barefoot Tofino switching chip
with 32x100G ports. The traffic generator is a dual-CPU 40-core 2.2
GHz Xeon E5-2630 with one Mellanox 100Gbps MCX515A-CCAT
NIC. The BESS server for Lemur is a dual-CPU 8-core 1.7 GHz Xeon
Bronze 3106 with one 40Gbps single-port XL710 Intel NIC. In some
experiments, we use a Netronome Agilio CX 1x40 Gbps NIC or
Edgecore AS5712-54X OpenFlow switch.

NFs and NF chains. Our experiments use five different canoni-
cal chains, shown in Table 2. These represent a range of use cases
selected from [21] and from our discussions with ISPs. These canon-
ical chains are composed of numerous NF implementations across
the three platforms for which we have developed Lemur thus far.
We include a summary of each network function, its corresponding
implementation, and the placement choices available in Table 3.
Two NFs, in bold, cannot be replicated across multiple cores.

Comparison. We compare Lemur, which runs the heuristic place-
ment described in §3.2, against alternative strategies. Each of these
alternatives corresponds to approaches described in prior work.
Optimal runs the brute-force placement algorithm. HW Preferred
places as many modules as possible on the PISA switch, which mod-
els the preferential use of accelerated hardware [27]. SW Preferred
places all NFs with software implementations in software (BESS),
which models the preferential deployment of NFs on commodity
servers with kernel-bypassing techniques [33]. Minimum Bounce
minimizes the bounces between the switch and servers, emulating
prior work (e.g., using Kernighan-Lin in E2 [32]). Greedy selects
HW-preferred chain placement and allocates cores to first meet
the minimum rate requirement of each chain; once the minimum
requirement is satisfied, it greedily allocates spare cores to chains
sequentially by index. Once a chain’s maximum rate is reached, it
moves on to the next chain to allocate spare cores, possibly causing
the first chain to take resources that another chain would need to
achieve a more globally-ideal allocation. Our evaluation goal is to
show that an approach which holistically considers both accelera-
tors and commodity servers, and trades off traffic bounces when

516

necessary to accommodate more chains, can do much better than
approaches that focus on a single dimension.

Experiment Design. The input to our experiments is a collection
of chains, together with an SLO for each chain. The space of possible
SLOs is large. We systematically explore part of this space as follows.
For each chain, we first define its base rate as the rate it would
achieve if only one core were allocated to the slowest software NF
in the chain. Then, we perform experiments in which each chain’s
tmin 1S set to S times the base rate. We vary § from 0.5 to 4.0, in
steps of 0.5. As § increases, it becomes harder for schemes to satisfy
SLOs, since they need to either allocate more switch resources or
cores. In all experiments, we set tyax to be 100 Gbps.

Metrics. For each experiment, we first compute the placement
generated by Lemur and the other schemes and then use the meta-
compiler to generate code. Thereafter, we execute the NF chain
configuration on the testbed, but only when the placement is feasible
(i.e., meets SLOs). We measure and report the aggregate through-
put achieved, from which we can derive the aggregate marginal
throughput of each scheme.

5.2 Comparison Results

We test Lemur against alternatives with (subsets of) Chains 1-4 in
Table 2 (we use the fifth for Smart NIC experiments).

Overall results. Figure 2 compares Lemur performance with the
alternatives. These graphs show § on the x-axis and aggregate
throughput in Gbps on the y-axis. Each scheme is shown by a
vertical bar, and the aggregate tpni, is shown by a hashed blue
rectangle for each value of 8. The difference between each vertical
bar and the top of the hashed rectangle is its aggregate marginal
throughput. The absence of a vertical bar for a scheme for a given
¢ indicates that the scheme could not generate a feasible solution at
that 8.

Figure 2(a-e) show experiments for different chain combinations:
all four of chains 1-4, and all 3-chain combinations of these 4 chains.
In all experiments, as § increases, Lemur is the only one that produces
a feasible solution.

Comparison with Optimal. Moreover, across all experiments,
Lemur’s heuristic is able to find an SLO-satisfied solution for all
29 sets, matching the brute-force placement. In addition, Lemur
achieves the same marginal throughput as Optimal in all but one of
the experiments; in that one case, Lemur still outperforms all other
alternatives.

Moreover, as § increases, the total aggregate throughput of the
chains decreases. This is because all chains place greater demands
to meet their minimum rates and some chains are significantly
more expensive than others; as a result, increasing § forces the
reallocation of resources towards expensive chains (in order to
meet their SLOs) and away from faster chains that could have
delivered aggregate throughput gains.

Four chain experiment. In Figure 2a Lemur performs better than
the alternatives as it frees up and then uses spare cores to meet
chain SLOs; there are either insufficient cores or insufficient switch
pipeline stages for other schemes that waste cores on chains that
will overshoot their SLOs while failing to meet the SLOs for others.
Atad of 0.5, all approaches find feasible solutions, but Lemur has the

35 T T T

45

T T T
Optimal m—

45 T T T T
Optimal m—

m w T T T w T T
2 Optimal m— Greedy 2 Greedy 2 Greedy mmm—
O 30 + HW Preferred Lemur - o 40 | HW Preferred Lemur] [G) 40 HW Preferred Lemur 7
- SW Preferred mmm— Predicted Lemur = 35f SW Preferred mmm— Predicted Lemur B Z 35°f SW Preferred mmm— Predicted Lemur i
3 25 [Minimum bounce Min requirement i > Minimum bounce Min requirement > Minimum bounce Min requirement
£ 2 30 1 2 30l ,
2 20 b 3 25 S 25
° ° °
£ 15 R £ 20 £ 201
3 T 15§ 3 T 151 q
= 10 q = =4
=S T 10 H 8 ® 10 F 8
o 5 1 o 5 H o 5 H 1
5 . 5 5 (RES
< 0 < 0 l L 0 i
. 1x 1.5x 2x Ix 1.5x 2x 2.5x 3x 3.5x 4x 0.5x 1x 1.5x 2x 2.5x 3x
Minimal Rate Requirement Minimal Rate Requirement Minimal Rate Requirement
(a) NF chains {1,2,3,4} (b) NF chains {1,2,3} (c) NF chains {1,2,4}
w 45 T T T T T % 45 T T T T T T 35 T T
3 Optimal m— Greedy mm— g Optimal m— Greedy mmm— @ Lemur m—— No Profile s
o 40 - HW Preferred Lemur T o 40 - HW Preferred Lemur 1 S 30+ No Core Opt. Min requirement -
= 35 | SW Preferred Predicted Lemur i = 35 L SW Preferred Predicted Lemur i o
> Minimum bounce Min requirement > Minimum bounce Min requirement 5 25+
g 30 1 2 30t { 2
s L , £ a e 1
3 25 3 25 3
£ 20 B £ 20 8 E 15} i
T 15 1 T 157 1 E ol 1
2 2 ®
S 10 I I 1 | 4 & 10H 1 9
o o o 5F
25.....||lll’25" IH "?HHMI
2 0 2 o LB S L 0

1x 1.5x 2x
Minimal Rate Requirement

(d) NF chains {1,3,4}

2.5x

0.5x 1x 1.5x 2x 2.5x
Minimal Rate Requirement

(e) NF chains {2,3,4}

0.5x 1x 1.5x

Minimal Rate Requirement

(f) NF chains {1, 2,3} with/without optimization

Figure 2: Performance comparison of alternative schemes and of Lemur with toggled optimizations.

highest marginal throughput. By § 1.0, only the Greedy approach
and HW Preferred approach are able to compete with Lemur. At §
of 1.5, Lemur is the only approach that provides a feasible solution.
The reasons for these are varied, and somewhat nuanced, and are
better illustrated by our 3-chain experiments.

Three chain experiments. In 3-chain configurations (Figures 2b-
2e) we find that Lemur consistently provides higher marginal
throughputs than the alternatives, and finds feasible solutions at
higher § even when other alternatives cannot.

Minimum Bounce. Minimum bounce provides comparable mar-
ginal throughput to Lemur for low values of §, but beyond a § of 1.0,
it fails to find a solution. This is because it is unwilling to move an
intermediate NF to P4 as it attempts to avoid bounces. Adding the
bounce might allow an NF to use P4, freeing up server resources to
satisfy SLO.

HW Preferred. HW Preferred delivers the same rate regardless
of § because it maximizes P4 processing, and otherwise allocates
spare cores evenly among chains. While effective at lower § values,
it fails once the SLO for a slower chain cannot be satisfied because of
insufficient cores. In both the 4-chain and the 3-chain experiments,
the HW Preferred solution fits in the switch; below we discuss an
example where alternatives exceed switch stage limits, but Lemur
does not.

SW Preferred. SW Preferred fails to scale because all NFs are in
one subgroup, and we do not replicate stateful NFs or branch/merge
NFs. So, SLOs cannot be satisfied even at low 8. Lemur, though it is
subject to the same replication constraints is able to find a solution
with high marginal throughput.

Greedy. Greedy performs quite well in all our experiments as it
uses hardware when possible and attempts to meet the minimum

517

SLO using differential core allocation across chains. Greedy differs
from HW Preferred as it does not evenly distribute cores to chains
but instead does so preferentially to meet SLOs using Lemur’s
profiling (§3.2). Even so, it fails to find a feasible placement at
higher values of § when Lemur can. The reason is subtle: while
Greedy is the only one of our alternatives that targets SLOs, it starts
with a HW Preferred placement instead of a full exploration. Thus
Greedy may fail to satisfy SLOs because of a lack of cores. Consider
a chain a->B->c->D->E, where B and D are on the server, the rest
on the switch. Greedy is forced to allocate one core each to B and
D, while Lemur can potentially place C on the server and allocate
a core to the subgroup B->c->p. (Our heuristic implements such
optimizations.)

Specific chains. In Figure 2b all schemes deliver higher rates
and meet higher § requirements since this experiment omits Chain
4, which, as seen in Table 2, is complex.

In NF chains {1, 2,3} and NF chains {1,2,4}, when § = 0.5,
we note that Minimum bounce is competitive to Lemur, but in
NF chains {1, 3,4} it underperforms. This is due to Chain 1, for
which Minimum Bounce tries to minimize the number of bounces
although it is possible to move some modules to P4. Under the same
constraint as discussed in §3.2, Lemur finds that one more bounce
of Chain 1 is beneficial and enables an expensive subgroup to be
replicated, which allows spare cores to be allocated to faster chains.
Instead, Minimum Bounce is unwilling to trade the bounce and it
allocates the cores to slow chains, with lower total throughput.

Comparison Summary. Across all experiments, Lemur can al-
ways find a feasible solution while other approaches only do 17-76%

of the time. Moreover, overall, Lemur obtains a marginal through-
put lead ranging from 500 Mbps to nearly 24 Gbps (at the latter end,
more than 50% of link capacity).

Profiling and Performance prediction. In all figures in Figure 2,
we show the predicted aggregate throughput as a o above the Lemur
bar. This prediction is the sum of estimated rates (§3.2) of all chains.
In general, the predicted throughput closely matches the measured
throughput; in this section, we explore why the match is close, and
when it is not perfect.

Predictions are conservative. This prediction depends on
profiling, and is not always perfect. For example, Greedy, which
uses profiles, exhibits non-monotonic aggregate throughput for
NF chains {1,2,4} for § = 1 and § = 0.5. When we profile an NF,
we pick the worst-case cycle count reported by BESS. In some runs,
NFs see lower cycle counts and therefore higher rates. In this case,
the predicted aggregate rate for both values of § were the same, but
é = 1 saw lower cycle counts and a higher rate in our experiments.

Cross-socket costs. Our profiles assume worst-case cross-socket
costs. Our server has 2 sockets, and the NIC is connected to one of
them. If a subgroup is replicated on cores on the same socket as the
NIC, our measured rates will be higher than predicted; this occurs
in most experiment sets.

Data-dependent NFs. Performance prediction may be inaccu-
rate for an NF like dedup. This does not occur in our experiments,
but this NF is interesting in two ways: (a) the number of cycles to
process a packet can vary due to packet contents; and (b) the NF’s
packet egress rate is less than its ingress rate. We leave exploration
of this to future work.

The stability of profiled cycle costs. Table 4 shows the statis-
tics of cycle costs for several NFs, across 500 profiling runs.® In
general, these profile costs are extremely stable, with the worst-
case cycle cost being within 6.5% of the average cycle cost. This is
surprising, but explains why our predicted throughput matches the
measured throughput so well. To understand this better, we tried
to understand the effect of under-estimating the cycle costs. We
conducted an experiment in which we reduced the profiled costs by
a fraction, ranging from 1% to 10%, mimicking errors in profiling.
We found that, even with these errors, Lemur produces a configuration
with the same aggregate marginal throughput as the baseline, up to
8% errors. The stability of the cycle costs, and the relative insen-
sitivity of Lemur to errors, is encouraging and explains why our
predicted throughputs match measured throughputs.

Cache effects. ResQ [41] examined NF cache effects and showed
NF profiling can be cache sensitive, especially if packet queues
before NFs are large and are shared across NFs. In Lemur, we have
experimentally verified that our queues are short; in this setting

5We generate traffic in two ways that exercise worst-case NF behavior. For NFs that
perform poorly with long-lived traffic, we generated 30-50 uniformly distributed long-
lived flows. For NFs that perform poorly with short-lived flows, we generated 3.2 mpps
of traffic with 10,000 new flows/sec each lasting 1 second.

518

NF | NUMA | Mean | Min Max

Encrypt Same 8593 8405 8777

Encrypt Dift 8950 8755 | 9123

Dedup Same 30182 | 29202 | 30867

Dedup Diff 31188 | 29969 | 33185

ACL (1024 rules) Same 3841 3801 4008
ACL (1024 rules) Diff 4020 3943 4091
NAT (12000 entries) Same 463 459 477
NAT (12000 entries) Diff 496 491 507

Table 4: Example profiled NF costs (CPU cycles/packet)

[41] shows that NF profiling variability can be bounded to within
3%, consistent with our findings.

An extreme configuration: P4 stage constraints. So far switch
stage constraints are implicit since link and core constraints dom-
inate. Next we consider an extreme NF chain configuration that
causes the switch to run off stages. This is a variant of Chain 2 with-
out encryption: BPF->11 NAT (branched)->IPv4Fwd, and we choose
& = 0.5 for which we expect the chain minimum rate requirement
will be about 44.9 Gbps. Here SW Preferred fails to satisfy SLOs
while all other alternatives exceed the number of switch stages. By
contrast, Lemur finds a feasible solution, placing 10 of the NaTs in
the switch, and one on the server.

This illustrates the importance of using the P4 compiler to com-
pute stage usage. Initially, we attempted to estimate stage usage by
analyzing placement results, using a recent work technique [14].
But, such estimates were very conservative. For the 10 NaT place-
ment, it estimated 14 stages, while the compiler could fit these into
12 stages using internal black-box optimizations. This shows the
importance of our dependency elimination algorithms for stage
compaction (§4.2); without it, the 10 NaT placement would have
required 27 stages.

5.3 Other Experiments

Importance of Lemur Components. Lemur uses both NF profil-
ing and subgroup scaling with core allocation to meet SLOs. Fig-
ure 2f considers removal of each feature in turn.

No Profiling. Here we assume all NFs have the same cycle cost.
Because this variant is unable to distinguish between expensive
and cheap NFs, it generally has lower marginal throughput, and
becomes infeasible for higher values of § because it needlessly gives
cores to cheap NFs.

No Core Allocation. Here we assign no extra cores to scale
subgroups; this variant can only satisfy SLOs at § = 0.5.

Placement across multiple servers. Above we evaluate with a
16-core server with a single NIC, but this is not a limitation for
Lemur. Lemur can reason about multi-server placements. To show
this, we run an experiment using NF chains {1, 2, 3} where Lemur
is used to place the 3-chain set on (a) a single 8-core server, and (b)
two 8-core servers. Figure 3a shows that, when § = 0.5, the single
server gets less than half the aggregate throughput of the 2-server
experiment. However, for a very subtle reason, when é = 1.5, Lemur
cannot find a feasible solution for the single serve case. Chain 3
contains the following sub-chain pedup->acrL->Limiter. The base
rate of this chain is bottlenecked by pedup. When § = 0.5, Lemur

30 T

T
Lemur 2 servers

Lemur 1 server mmm—
Min requirement

20 b
15 b

10 b

Aggregated Throughput (Gbps)

Aggregated Throughput (Gbps)

T
Lemur w/ SmartNIC
Lemur m—

10

T
ACL on Openflow

ACLon SW s
Min requirement ~

T T
Min requirement b

Aggregated Throughput (Gbps)

. RS i st
o |
0.5x 1 1.5x

Minimal Rate Requirement

X

(a) Two servers

Minimal Rate Requirement

(b) SmartNIC

—
0 v
5x

2x 0. X

1.5x 1 1.5x

Minimal Rate Requirement

(c) OpenFlow switch

Figure 3: Performance comparison of Lemur running with different hardware and on multiple servers.

is able to allocate one core to the subgroup bedup->AcL->Limiter,
because the additional modules acL and Limiters are relatively
lightweight, so one core can satisfy their SLO. However, when
d = 1.5, this subgroup assignment can no longer satisfy the SLO,
and Lemur, to satisfy the chain’s SLO (a) offloads acL to the switch,
(b) replicates pedup on two cores, and (c) allocates a 3rd core for
Limiter which is non-replicable. It thus runs out of cores in the
1-server case.

Placement on a SmartNIC. Lemur can accelerate NFs across mul-
tiple types of hardware. To demonstrate this, Figure 3b shows an
experiment on Chain 5, which includes the ChaCha NF [30, 38].
ChaCha cannot be implemented in the P4 switch but can be in
the SmartNIC and on x86 servers. Our SmartNIC implementation
(which uses eBPF on a 40G Netronome NIC) is more than 10X faster
than on the server. In Figure 3b, Lemur is able to achieve higher
aggregate throughput at lower § by offloading ChaCha to the Smart-
NIC. At § = 1.5, Lemur cannot produce a server-only solution since
the tyin is too high for a server (even with multiple cores). This
shows that Lemur can achieve close to the line rate of 40 Gbps,
lower only due to NSH header overhead.

Placement on an Openflow switch. OpenFlow switches are ubig-
uitous today, unlike PISA switches. We show how Lemur can use an
OpenFlow switch in place of a PISA switch. Unlike a PISA switch,
an OpenFlow switch has fixed table order, so the Placer must check
whether a configuration violates the switch table order to execute
NFs. Also, Openflow switches do not support NSH; Lemur uses
VLAN in its place (specifically, the 12-bit vid field as SPI-SI to de-
multiplex packets for different subgroups). This somewhat limits
how many chains and how many NFs can be configured, but using
Lemur with an OpenFlow switch still provides overall benefits. To
demonstrate how an Openflow switch can accelerate NFs, we com-
pare offloading acr, or not, to an OpenFlow switch on chain 3, as
shown in Figure 3c; this can accommodate up to 7710 Mbps traffic
for that chain, while stitching acL via a commodity server can only
achieve 693 Mbps.

Lemur decouples the performance optimization and the code
generation from the actual deployment of NF chains. This makes it
extensible to other hardware platforms as well.

Adding latency constraints. Lemur can reason about latency
constraints, which are encoded into our LP formulation (§3.2). The
switch vendor’s EULA disallows reporting latency details, but we

519

show a single experiment in which we model chain latency using (a)
propagation and transmission latency between switch and server,
and (b) NF execution delay. Here we used Chain 1 and Chain 4, and
assigned each a latency constraint of 45 ps. This allows Lemur to
increase marginal throughput at the expense of additional bounces
between the server and switch, and for this case we get over 21 Gbps.
When we constrain the latency to 25 ps, Lemur is forced to reduce
the number of bounces and can only achieve 9 Gbps.”

Meta-compiler Benefits and Overhead. The meta-compiler au-
tomates coding tasks that would otherwise have to be performed
by a system administrator. We quantify this benefit by counting
the lines of code auto-generated by Lemur. The most significant
code generation component is for P4, and for NF chains {1, 2, 3,4}
more than a third of the total code (about 820 out of 1700 lines) is
auto-generated, with most of the auto-generated code (600 lines)
providing packet steering.

Flexible NF-chain composition comes at a cost which takes two
forms: additional stage usage in P4, and additional cycle costs in
BESS. We have to burn two P4 stages, one each to encapsulate and
decapsulate packets. Our BESS cycle cost overheads for these are
modest at about 220 cycles. The server also incurs about 180 cycles
to load-balance packets when a subgroup is allocated to multiple
cores. These overheads are a small fraction of NF cycle costs and of
the coordination overheads imposed by any framework or virtual
switch.

Scaling Placer Computation. Brute-force placement is slow; for
the 4-chain case (34 NF instances in total) it takes 14901 seconds
(~4 hours). Our heuristic is far faster, taking 3.5 s for the 4-chain
case, motivating our careful design.

6 RELATED WORK

Lemur builds upon prior work but is unique in meeting SLOs while
targeting diverse hardware platforms.

NFV frameworks. NFV frameworks [5, 12, 31] help develop, chain,
execute, and deploy NFs. NetBricks [33] provides abstractions to
write NFs, and a fast, safe runtime implemented in Rust. NFP [40]
enables parallelism for NFV by avoiding NF-dependencies. E2 [32]

7Sources of latency include DPDK and switch queueing, and encap/decap overheads.
The 9 Gbps drop occurs because the higher throughput placement violates latency
SLO (due to multiple bounces), so Lemur picks an SLO-compliant alternative with
lower throughput.

demonstrates the potential of orchestration of NF chains using
commodity servers. We see Lemur as a key future component of
such frameworks.

vNF placement and orchestration. Most relevant to our work is
SmartChain [43], which explores the placement of vNFs between a
smartNIC and CPU cores on a server. It focuses on optimizing one
NF-chain’s latency on one machine. While this is important, Lemur
tackles a more practical deployment scenario, i.e., many chains
deployed in a cluster where a switch interconnects many servers
with or without a smartNIC. Moreover, Lemur’s Placer can find a
placement with bounces that satisfy both throughput and latency
SLO requirements. SmartChain, however, ignores the possibility of
utilizing the full capability of hardware, and allows only one NIC-
CPU transmission. Other work on vNF placement [7, 13, 23, 34]
solves an optimization problem targeting a general deployment
scheme. Lemur’s heterogeneous-hardware architecture and run-
to-completion execution are novel in this context, and our model
reflects practical deployment constraints, optimizing for throughput
while meeting latency SLOs. Of these, Cziva et al. [7] and Laghrissi
et al. [23] consider a case where user mobility affects the end-to-
end NF-chain latency. The former proposes a predictive placement
algorithm. The latter proposes a dynamic-migration algorithm that
minimizes the latency violations and the number of vNF migrations.
Lemur targets a different setting where mobility is less of a concern:
packet processing at the ingress to a cellular provider’s backhaul
network. In [13], Gouareb et al. model the end-to-end latency by
considering both the link delay and the inter-cloud delay. They
assume NFs are hosted on separate clusters. Lemur focuses on
latency SLOs within the cluster, since that is what a service provider
can control. Finally, in [34], Pham et al. model and optimize for the
system operational cost of running an NFV infrastructure. While
the objective is different, Lemur addresses this problem from a
different perspective: it utilizes hardware accelerators to reduce the
number of commodity servers.

Hardware acceleration. UNO [24] offloads NFs to a Smart NIC
on a single host to save CPU time and energy. Metron [18] shows
how switch hardware can steer traffic to specific CPU cores on
servers running NFs, thereby avoiding cross-core costs; Lemur can
easily be augmented to include this as discussed in §3.2. Lemur
is distinguished by its focus on meeting SLOs across chains and
hardware platforms.

Several accelerate NFV platforms using high-end networking
hardware including GPUs [20, 45], FPGAs [25], and programmable
switching chips [11, 27] for specific types of NFs. Lemur generalizes
this line of work by considering placement across heterogeneous
hardware, but is also unique in considering SLOs. Sonata [14] ex-
plores hardware acceleration for accurate network measurement; by
contrast, Lemur is a generic framework for accelerating NFs. Several
other papers have also demonstrated the power of P4 [11, 19, 27]
in accelerating specific network functions, and motivate our focus
on offloading NF execution to programmable hardware.

Only two prior papers meet SLOs for NF chains with new hard-
ware. ResQ uses Intel’s CAT to help meet SLOs [41]. Lemur targets
macro-level SLOs across NF chains on many platforms, and can
use ResQ’s techniques. Grus [47] lowers latency for NFs on GPUs

520

given a bound; in future work we can extend Lemur to GPUs using
techniques from Grus.

7 DISCUSSION

Dynamics. Lemur must deal with two different types of dynamics.
One is customers’ traffic dynamics. ISPs sign service level agree-
ments with their customers to offer a certain bandwidth and if per-
mitted, they are willing to allow their customers to add more band-
width to burst above the minimal SLO requirement. If customers
do not pay an additional fee to increase their bursty bandwidth,
the ISP would apply a rate limiter to control the traffic volume
into the service chain, and hence Lemur assumes that there is a
rate limiter before the traffic for each service chain. Because Lemur
provisions for rate limit, it is immune to this type of dynamics. A
second form of dynamics is customers requesting higher bandwidth
for their service chains for which our heuristics can easily compute
a new placement, and we assume we can adopt other well-known
techniques (e.g., Metron [18], OFM [39]) for NF migration.

Lemur’s SLO model matches today’s ISP pricing models which
provide either fixed pipes, or pipes with guaranteed minimum rates
and a variable pay-as-you-go burst. So, today customers have no
way of optimizing their costs based on diurnal variations. If, in the
future, ISPs provide time-varying SLOs (e.g., minimum rate of x
between 10am and 4pm), Lemur can precompute chain placements
for those SLOs and install them accordingly.

Failures. Lemur leverages on-path hardware (PISA switches, NICs),
so if those fail, it will have to re-route traffic to another rack or
server. If the new path does not have enough hardware offload
resources, Lemur can always fall back to using server-based NFs.
Its Placer can make these decisions either reactively (after failure),
or proactively (perhaps by reserving some spare capacity to ensure
fast failover).

8 CONCLUSION

Lemur tackles a key problem in NFV deployments: meeting SLOs
while leveraging available hardware. Its Placer considers several
competing objectives to increase marginal throughput, while its
meta-compiler coordinates NF chain execution seamlessly across
several platforms. Lemur outperforms several other alternatives,
and its placement computation scales well. Its structure enables it
to both integrate recent work on NF scaling, and to integrate into
existing frameworks.

ACKNOWLEDGEMENTS

This work was supported in part by US National Science Foun-
dation grant CNS-1901523, the CONIX Research Center (one of
six centers in JUMP, a Semiconductor Research Corporation (SRC)
program sponsored by DARPA), the Conselho Nacional de Desen-
volvimento Cientifico e Tecnoldgico (CNPq) grant 205154/2018-2,
USC’s Annenberg Fellowship, Intel, and Cisco.

REFERENCES

[1] Bhavish Aggarwal, Aditya Akella, Ashok Anand, Athula Balachandran, Pushkar
Chitnis, Chitra Muthukrishnan, Ramachandran Ramjee, and George Varghese.
EndRE: An End-system Redundancy Elimination Service for Enterprises. In
Proceedings of USENIX/ACM NSDI, 2010.

[2] Berkeley Extensible Software Switch. https://github.com/NetSys/bess, 2019.

https://github.com/NetSys/bess

[3] Pat Bosshart, Dan Daly, Glen Gibb, Martin Izzard, Nick McKeown, Jennifer Rex-

[10

[11

[12

(13

[14

[15

[16

(17

[18

[19

[20

[21

[22

[23

[24

]

]

]

]

]

]

]

ford, Cole Schlesinger, Dan Talayco, Amin Vahdat, George Varghese, and David
Walker. P4: Programming protocol-independent packet processors. SIGCOMM
Comput. Commun. Rev., 44(3):87-95, July 2014.

Pat Bosshart, Glen Gibb, Hun-Seok Kim, George Varghese, Nick McKeown, Martin
Izzard, Fernando Mujica, and Mark Horowitz. Forwarding metamorphosis: Fast
programmable match-action processing in hardware for sdn. In ACM SIGCOMM
Computer Communication Review, volume 43, pages 99-110. ACM, 2013.

Anat Bremler-Barr, Yotam Harchol, and David Hay. Openbox: A software-defined
framework for developing, deploying, and managing network functions. In
Proceedings of ACM SIGCOMM, 2016.

Adrian M Caulfield, Eric S Chung, Andrew Putnam, Hari Angepat, Jeremy Fowers,
Michael Haselman, Stephen Heil, Matt Humphrey, Puneet Kaur, Joo-Young Kim,
et al. A cloud-scale acceleration architecture. In 2016 49th Annual IEEE/ACM
International Symposium on Microarchitecture (MICRO), pages 1-13. IEEE, 2016.
Richard Cziva, Christos Anagnostopoulos, and Dimitrios P Pezaros. Dynamic,
latency-optimal vnf placement at the network edge. In Ieee infocom 2018-ieee
conference on computer communications, pages 693-701. IEEE, 2018.

J. Duato, A. J. Pena, F. Silla, R. Mayo, and E. S. Quintana-Orti. rcuda: Reducing
the number of gpu-based accelerators in high performance clusters. In 2010
International Conference on High Performance Computing Simulation, pages 224—
231, June 2010.

Abdessalam Elhabbash, Assylbek Jumagaliyev, Gordon S Blair, and Yehia Elkhatib.
Slo-ml: A language for service level objective modelling in multi-cloud applica-
tions. In Proceedings of the 12th IEEE/ACM International Conference on Utility and
Cloud Computing, pages 241-250, 2019.

Daniel Firestone, Andrew Putnam, Sambhrama Mundkur, Derek Chiou, Alireza
Dabagh, Mike Andrewartha, Hari Angepat, Vivek Bhanu, Adrian Caulfield, Eric
Chung, et al. Azure accelerated networking: Smartnics in the public cloud. In
15th {USENIX} Symposium on Networked Systems Design and Implementation
({NSDI} 18), pages 51-66, 2018.

Rohan Gandhi, Honggiang Harry Liu, Y Charlie Hu, Guohan Lu, Jitendra Padhye,
Lihua Yuan, and Ming Zhang. Duet: Cloud scale load balancing with hardware
and software. ACM SIGCOMM Computer Communication Review, 44(4):27-38,
2015.

Aaron Gember-Jacobson, Raajay Viswanathan, Chaithan Prakash, Robert Grandl,
Junaid Khalid, Sourav Das, and Aditya Akella. OpenNF: Enabling innovation in
network function control. In Proceedings of ACM SIGCOMM, 2014.

Racha Gouareb, Vasilis Friderikos, and Abdol-Hamid Aghvami. Virtual network
functions routing and placement for edge cloud latency minimization. IEEE
Journal on Selected Areas in Communications, 36(10):2346—-2357, 2018.

Arpit Gupta, Rob Harrison, Marco Canini, Nick Feamster, Jennifer Rexford, and
Walter Willinger. Sonata: query-driven streaming network telemetry. In Proceed-
ings of ACM SIGCOMM, 2018.

Mark Handley, Costin Raiciu, Alexandru Agache, Andrei Voinescu, Andrew W.
Moore, Gianni Antichi, and Marcin Wojcik. Re-architecting datacenter net-
works and stacks for low latency and high performance. In Proceedings of ACM
SIGCOMM, 2017.

Rishabh Iyer, Luis Pedrosa, Arseniy Zaostrovnykh, Solal Pirelli, Katerina Argyraki,
and George Candea. Performance contracts for software network functions. In
16th USENIX Symposium on Networked Systems Design and Implementation (NSDI
19), pages 517-530, Boston, MA, February 2019. USENIX Association.

Lavanya Jose, Lisa Yan, George Varghese, and Nick McKeown. Compiling packet
programs to reconfigurable switches. In Proceedings of USENIX/ACM NSDI, 2015.
Georgios P. Katsikas, Tom Barbette, Dejan Kosti¢, Rebecca Steinert, and Gerald
Q. Maguire Jr. Metron: NFV service chains at the true speed of the underlying
hardware. In Proceedings of USENIX/ACM NSDI, 2018.

Naga Katta, Mukesh Hira, Changhoon Kim, Anirudh Sivaraman, and Jennifer
Rexford. Hula: Scalable load balancing using programmable data planes. In
Proceedings of the Symposium on SDN Research, 2016.

Joongi Kim, Keon Jang, Keunhong Lee, Sangwook Ma, Junhyun Shim, and Sue
Moon. NBA (network balancing act): A high-performance packet processing
framework for heterogeneous processors. In Proceedings of the Tenth European
Conference on Computer Systems, 2015.

Surendra Kumar, Mudassir Tufail, Sumandra Majee, Claudiu Captari, and Shun-
suke Homma. Service Function Chaining Use Cases In Data Centers. Internet-
Draft draft-ietf-sfc-dc-use-cases-06, Internet Engineering Task Force, February
2017. Work in Progress.

Tung-Wei Kuo, Bang-Heng Liou, Kate Ching-Ju Lin, and Ming-Jer Tsai. Deploying
chains of virtual network functions: On the relation between link and server
usage. In Proceedings of IEEE INFOCOM, 2016.

Abdelquoddouss Laghrissi, Tarik Taleb, Miloud Bagaa, and Hannu Flinck. To-
wards edge slicing: Vnf placement algorithms for a dynamic & realistic edge cloud
environment. In GLOBECOM 2017-2017 IEEE Global Communications Conference,
pages 1-6. IEEE, 2017.

Yanfang Le, Hyunseok Chang, Sarit Mukherjee, Limin Wang, Aditya Akella,
Michael M Swift, and TV Lakshman. UNO: unifying host and smart NIC offload
for flexible packet processing. In Proceedings of ACM SoCC, 2017.

521

[25

[26]

[27

[29

[30

(31

[32

@
&

(34

(35]

[36]

[38

[39

[40

[41

[42

[43

[44

[45

=
&

[47

Bojie Li, Kun Tan, Layong Larry Luo, Yanqing Peng, Rengian Luo, Ningyi Xu,
Yonggqiang Xiong, Peng Cheng, and Enhong Chen. ClickNP: Highly flexible
and high performance network processing with reconfigurable hardware. In
Proceedings of ACM SIGCOMM, 2016.

John W Lockwood, Nick McKeown, Greg Watson, Glen Gibb, Paul Hartke, Jad
Naous, Ramanan Raghuraman, and Jianying Luo. Netfpga—an open platform for
gigabit-rate network switching and routing. In Microelectronic Systems Education,
2007. MSE’07. IEEE International Conference on, pages 160-161. IEEE, 2007.

Rui Miao, Hongyi Zeng, Changhoon Kim, Jeongkeun Lee, and Minlan Yu.
SilkRoad: Making Stateful Layer-4 Load Balancing Fast and Cheap Using Switch-
ing ASICs. In Proceedings of ACM SIGCOMM, 2017.

Ali Mohammadkhan, Sheida Ghapani, Guyue Liu, Wei Zhang, KK Ramakrishnan,
and Timothy Wood. Virtual function placement and traffic steering in flexible
and dynamic software defined networks. In Local and Metropolitan Area Networks
(LANMAN), 2015 IEEE International Workshop on, 2015.

Barefoot Networks. The world’s fastest & most programmable networks.
https://barefootnetworks.com/resources/worlds-fastest-most-programmable-
networks/.

Yoav Nir and Adam Langley. ChaCha20 and Poly1305 for IETF Protocols. RFC
8439, June 2018.

Network Operators. Network functions virtualization, an introduction, benefits,
enablers, challenges and call for action. In SDN and OpenFlow SDN and OpenFlow
World Congress, 2012.

Shoumik Palkar, Chang Lan, Sangjin Han, Keon Jang, Aurojit Panda, Sylvia
Ratnasamy, Luigi Rizzo, and Scott Shenker. E2: A framework for nfv applications.
In Proceedings of ACM SOSP, 2015.

Aurojit Panda, Sangjin Han, Keon Jang, Melvin Walls, Sylvia Ratnasamy, and
Scott Shenker. Netbricks: Taking the v out of NFV. In Proceedings of USENIX/ACM
OSDI, 2016.

Chuan Pham, Nguyen H Tran, Shaolei Ren, Walid Saad, and Choong Seon Hong.
Traffic-aware and energy-efficient vnf placement for service chaining: Joint
sampling and matching approach. IEEE Transactions on Services Computing, 2017.
Paul Quinn, Uri Elzur, and Carlos Pignataro. Network Service Header (NSH).
RFC 8300, January 2018.

T. Shimokawabe, T. Aoki, C. Muroi, J. Ishida, K. Kawano, T. Endo, A. Nukada,
N. Maruyama, and S. Matsuoka. An 80-fold speedup, 15.0 tflops full gpu ac-
celeration of non-hydrostatic weather model asuca production code. In SC ’10:
Proceedings of the 2010 ACM/IEEE International Conference for High Performance
Computing, Networking, Storage and Analysis, pages 1-11, Nov 2010.

Hardik Soni, Myriana Rifai, Praveen Kumar, Ryan Doenges, and Nate Foster.
Composing dataplane programs with pip4. In Proceedings of the Annual conference
of the ACM Special Interest Group on Data Communication on the applications,
technologies, architectures, and protocols for computer communication, pages 329-
343, 2020.

Speeding up and strengthening HTTPS connections for Chrome on An-
droid. https://security.googleblog.com/2014/04/speeding-up-and-strengthening-
https.html, 2014.

Chen Sun, Jun Bi, Zili Meng, Xiao Zhang, and Hongxin Hu. Ofm: Optimized
flow migration for nfv elasticity control. In 2018 IEEE/ACM 26th International
Symposium on Quality of Service (IWQoS), pages 1-10. IEEE, 2018.

Chen Sun, Jun Bi, Zhilong Zheng, Heng Yu, and Hongxin Hu. Nfp: Enabling
network function parallelism in nfv. In Proceedings of ACM SIGCOMM, 2017.
Amin Tootoonchian, Aurojit Panda, Chang Lan, Melvin Walls, Katerina Argyraki,
Sylvia Ratnasamy, and Scott Shenker. Resq: Enabling slos in network function
virtualization. In Proceedings of USENIX/ACM NSDI, 2018.

Marcos A. M. Vieira, Matheus S. Castanho, Racyus D. G. Pacifico, Elerson R. S.
Santos, Eduardo P. M. Camara Junior, and Luiz F. M. Vieira. Fast packet processing
with ebpf and xdp: Concepts, code, challenges, and applications. ACM Comput.
Surv., 53(1), February 2020.

Shuhe Wang, Zili Meng, Chen Sun, Minhu Wang, Mingwei Xu, Jun Bi, Tong Yang,
Qun Huang, and Hongxin Hu. Smartchain: Enabling high-performance service
chain partition between smartnic and cpu. In ICC 2020-2020 IEEE International
Conference on Communications (ICC), pages 1-7. IEEE, 2020.

Shinae Woo, Justine Sherry, Sangjin Han, Sue Moon, Sylvia Ratnasamy, and
Scott Shenker. Elastic scaling of stateful network functions. In Proceedings of
USENIX/ACM NSDI, 2018.

Kai Zhang, Bingsheng He, Jiayu Hu, Zeke Wang, Bei Hua, Jiayi Meng, and
Lishan Yang. G-NET: Effective GPU Sharing in NFV Systems. In Proceedings of
USENIX/ACM NSDI, 2018.

Peng Zheng, Arvind Narayanan, and Zhi-Li Zhang. A closer look at nfv execution
models. In Proceedings of the 3rd Asia-Pacific Workshop on Networking 2019, pages
85-91, 2019.

Zhilong Zheng, Jun Bi, Haiping Wang, Chen Sun, Heng Yu, Hongxin Hu, Kai Gao,
and Jianping Wu. Grus: Enabling latency slos for gpu-accelerated nfv systems.
In 2018 IEEE 26th International Conference on Network Protocols (ICNP), pages
154-164. IEEE, 2018.

https://barefootnetworks.com/resources/worlds-fastest-most-programmable-networks/
https://barefootnetworks.com/resources/worlds-fastest-most-programmable-networks/
https://security.googleblog.com/2014/04/speeding-up-and-strengthening-https.html
https://security.googleblog.com/2014/04/speeding-up-and-strengthening-https.html

A META-COMPILER

In this section, we include hardware and software switch imple-
mentation details to reproduce Lemur’s experiments.

A.1 x86-based commodity server

A.1.1 BESS script generation. Lemur’s chain specification is
inspired by BESS’ script language. When specifying a pipeline, the
user of BESS writes simple languages to concatenate NFs with
arrows, and our Lemur user-level configuration adopts BESS script
language style with small revisions. As such, Lemur can use BESS’s
parser with two small modifications, described below.

Instance Name parsing BESS allows users to define several mod-
ule instances that belong to the same module class, and our con-
figuration file language also supports instance naming convention.
Lemur user can declare several instance names to represent multi-
ple BESS module instances. For example, there is an access control
(ACL) module class, and users can define an ’ACL0’ instance that
uses ACL module class. Analogously, Lemur users are allowed to
create instance name ’ACL0O’ for ACL NF. Lemur also supports
macro definitions for arguments for module creation. To support
both of these, we added functionality to the parser.

A.1.2 Shared Modules. In a BESS pipeline, there are some mod-
ules that are shared by all contiguous subgroups. Specifically, ‘Port-
Inc’ and ‘PortOut’ modules are used to pull and push packets from
the NIC in poll mode. Similarly, all packets are required to de-
capsulate the NSH header and be distributed to a corresponding
contiguous subgroup for further processing, and for this we intro-
duce a custom ‘NSHdecap’ module into each BESS pipeline, to be
shared by all contiguous subgroups. Before pushing packets to the
NIC, packets are required to be encapsulated with the NSH header
again to indicate the downstream module in another platform what
next NF processing should be applied. Hence, the final step to wrap
up a subgroup processing in BESS is to use a custom "NSHencap’
module to tag the next service path index and service index pair.

A.1.3 Core Assignment. Given the placement solution returned
from Lemur Placer, BESS code generator automatically translates
the optimization result to manage the pipeline scheduler. BESS’s
scheduler is responsible for managing the execution of modules to
process traffic in a whole pipeline; BESS separates the module graph
from the scheduler tree, which is a per-core tree of logical (interior
nodes) or physical (leaf nodes) schedule-able entities akin to Linux
te, enabling the implementation of complex hierarchical scheduling
policies. By default, a single pipeline is assigned to the first system
core under a round-robin root node and would be assigned with
one core to handle corresponding traffic.

When BESS’s code generator receives a placement solution from
the optimizer, it pre-computes the optimal core placement to max-
imize throughput. According to this core allocation, we allocate
cores to contiguous NF subgroups via the BESS scheduler. This
allocation of cores to subgroups is done carefully to avoid violation
of mutual exclusion in the NF DAG and to avoid fragmentation
of stateful NFs. Ultimately, the overall chain throughput is limited
by some contiguous subgroup, and since NF and/or subgroups can
have dramatically different costs, we find that despite multi-chain

522

allocation it is ultimately most meaningful to analyze each chain
independently.

A.2 PISA switch

Deploying NFs in a switch hardware is different from deploying
them in a server. Hardware switches process packets with a pipeline
of switch stages. P4 switches require a platform-specific compiler
that compiles a P4 program into a binary configuration for switch
ASICs. The binary configuration maps a switch abstraction into
the underlying hardware resources, such as per-stage register bits,
TCAM, SRAM, ALUs and so on.

To generate a P4 program and get it compiled into the switch
hardware, Lemur’s meta compiler unifies many P4 NFs and gener-
ate a single P4 program that (1) has a unified packet header parser
that can recognize all possible packet headers from each individual
NFs, and (2) has a complete set of match-action tables and ensures
packets traverse through them in the correct order. With Lemur,
NF developers can build new P4 NFs as standalone NFs. They use
Lemur’s extended P4 syntax to design new P4 NFs, or modify the
P4 implementations of NFs slightly to make them recognizable by
Lemur’s meta-compiler. Then, Lemur’s meta-compiler is responsi-
ble for unifying P4 NFs into a final P4 program by unifying header
parser trees, and composing them into a switch pipeline.

A.2.1 Algorithm of unifying P4 parsers. In an abstract P4 switch
model, a header parser is a parser tree that has each tree node rep-
resenting a unique packet header and is usually rooted at Ethernet
header. It is an ordered tree and contains a number of transitions
from one header to next possible headers. To unify P4 NFs, Lemur’s
meta-compiler must provide an unified header parser that parses all
necessary packet headers. To do so, the meta-compiler starts from
an empty parse tree and merges each P4 NF’s parse tree into that
unified tree. To merge a new parse tree, it traverses the new tree
and visits all parsing states (i.e. headers). At each parsing state, it
compares all state transitions between the new tree and the unified
tree, and integrates any non-existing transitions and new headers
into the unified tree. If the meta-compiler encounters a conflicting
header transitions, then it rejects this placement because at least
two NFs conflict with each other and cannot be placed at the P4
switch together.

A.2.2 Algorithm of generating the global P4 pipeline. Another
important aspect of Lemur’s meta-compiler is to unify match-action
tables from all P4 NFs into one final P4 switch pipeline.

At the pre-processing stage, Lemur’s meta-compiler concate-
nates NFs into a subgroup if they are in a sequential order and have
no branches or merges in between. This saves switch’s resources be-
cause packets’ NSH headers do not get unnecessarily updated and
matched when they traverse NFs in the subgroup. Concatenating
P4 NFs into subgroups also simplifies the control flow of the final
P4 pipeline. The output is a P4 subgroup DAG. In this DAG, nodes
are categorized as normal (leaf) nodes, branching nodes and merg-
ing nodes. To convert a P4 subgroup DAG to a P4 subgroup tree,
the meta-compiler handles branching nodes and merging nodes
differently.

A branching node is a subgroup node that has multiple down-
stream subgroup nodes. Traffic is split into downstream subgroups

with a set of BPF rules according to the NF chain specification. To
handle a branching node, Lemur’s code generator generates and
inserts a customized traffic-splitting table that is pre-populated
with BPF rules to split traffic. When packets arrive at the branch-
ing point, the table matches on packets’ traffic classes and decides
which branch the packet should be forwarded to. Decisions are
stored in a per-packet metadata field. Then, the meta-compiler
steps into all branches one at a time. It generates code for each
branch individually and places a condition checking before that
branch. This is to make sure that only destined packets should
be processed by a branch. This design only introduces necessary
dependencies between upstream subgroups and downstream sub-
groups, and does not introduce unnecessary dependencies among
different downstream subgroups. This allows a platform-specific
P4 compiler to pack parallel branches into the same set of switch
stages whenever possible.

A merging node is a subgroup node with multiple upstream
subgroup nodes. It is the merging point of multiple branches. In a
P4 switch pipeline, a table cannot be revisited twice as the pipeline
must be a tree structure. Therefore, Lemur must choose the right
place to generate code for a merging node, and ensure that all its
upstream branches can finally reach the merging subgroup node.
The code generator implements this by detaching a merging node
from the P4 subgroup DAG and re-attaching it to its all direct-
predecessors’ common ancestor node. That ancestor node has just
the right scope to ensure that all branches can reach the merging
node. The merging node is placed at the same level as the ancestor’s

523

children. When traversing the P4 subgroup tree, the code generator
must visit all non-merging nodes first. The code generator also
places a condition check on packets’ metadata to select packets that
are necessarily processed by NFs in merging nodes.

After dealing with branching and merging nodes, Lemur’s code
generator takes the P4 subgroup tree. It traverses the tree recur-
sively in Preorder, and generates P4 code for each subgroup node.

A.3 Execution: smartNIC

We use the Netronome Agilio CX 1x40 Gbps SmartNIC. This smart-
NIC is capable of executing eBPF (extended Berkeley Packet Fil-
ter) programs. The NFs are programmed in C language and then
compiled to the eBPF target, which is an intermediate assembly
representation [42].

We then load the eBPF program in the SmartNIC, offloading
the computation to the NIC. XDP (eXpress Data Path) is used to
hook the ingress traffic to the SmartNIC, which is running the eBPF
program.

Programming the SmartNIC with eBPF technology presents
some challenges. It has only 512 bytes of memory stack. It can
only load 4196 instructions. There can be no function call. More-
over, to load the program in the SmartNIC, the code has to pass
a verifier. The verifier does not allow back-edge jump (for, while).
We solved these challenges by optimizing the code for 64-bit im-
plementation, using loop unrolling to avoid for (back-edge), and
inlining all function calls.

	Abstract
	1 Introduction
	2 Lemur: Overview
	3 The Placer
	3.1 The Placement Problem
	3.2 The Placement Algorithm

	4 The Meta-Compiler
	4.1 Synthesizing NF Chain Routing
	4.2 Code Generation

	5 Evaluation
	5.1 Methodology
	5.2 Comparison Results
	5.3 Other Experiments

	6 Related Work
	7 Discussion
	8 Conclusion
	References
	A Meta-Compiler
	A.1 x86-based commodity server
	A.2 PISA switch
	A.3 Execution: smartNIC

