
Abstraction, Indirection, and Sevareid’s Law:
Towards Benign Computing

Barath Raghavan
ICSI

barath@icsi.berkeley.edu

ABSTRACT
Computing is one of the primary means by which we solve prob-
lems in society today. In this short paper we examine the implica-
tions of the primary techniques used in computer systems work—
abstraction and indirection—and of Sevareid’s Law, an epigram
that suggests that our problem-solving instinct may be leading us
astray. We explore the context of this dilemma and discuss in-
stances in which this has arisen in the recent past. We then consider
a few design options and changes to the normal mode of computer
science practice that might enable us to sidestep the implications of
Sevareid’s Law.

1. INTRODUCTION

The chief source of problems is solutions.

–Eric Sevareid [17]

Sevareid’s Law expresses a conundrum at the core of modern
industrial society. As we collectively identify and “solve” “prob-
lems”, we inevitably find that not only are many “problems” not
real problems, but that “solutions” applied to them are the causes
of new woes. The history of the last century is littered with ex-
amples of this conundrum, from chemical solutions like DDT [2]
and Tetraethyl lead [6] to agricultural solutions like mono-cropping
with synthetic fertilizers and pesticides [15] to financial solutions
like leverage [3] and complex derivatives [8]. In recent decades,
computing has become central to new solutions and to technologi-
cal progress.

Seeing the consequences of these “solutions”, some have argued
that technological progress, as currently understood in industrial-
ized societies, is itself suspect and undesirable, and perhaps even
something against which to fight. On the other hand, proponents of
technological progress argue that no matter the downsides, techno-
logical progress must be pursued [5]. We hope both to sidestep this
intractable debate in this paper and to chart what might be a middle
course in the context of computing.

Specifically, we introduce the notion of benign computing and
attempt to draw up a set of principles for computing that is less
likely to have unintended, harmful downsides to the global ecosys-
tem and to the subset of the ecosystem that is human society. Today
computing is seen as a source of potential solutions in nearly every
major sector of society, including energy, agriculture, transporta-
tion, health, education, manufacturing, science, and governance.

LIMITS’15, June 15–16, 2015, Irvine, California, USA

Modern computing, however, is still new enough that its princi-
ples and approaches have not withstood the test of time, and so the
implications of Sevareid’s Law for computing can only be defini-
tively seen with the benefit of hindsight. As we enter a critical pe-
riod in global society due to the ecological limits industrial society
faces today [10,13,16,19], this is an appropriate time to reconsider
both the foundations upon which computing is built and consider
a course correction if computing is to meet the needs of human
society in an age of limits.

2. ABSTRACTION AND INDIRECTION

Modularity based on abstraction is the way things are
done.

–Barbara Liskov [9]

In most fields of computer systems research and engineering, ab-
straction and indirection are key design principles. Abstraction in-
volves the distillation of data or concepts, creating orderliness and
enabling simplification and modularity. Indirection involves inter-
position on the flow of data or control between two modules within
some software or hardware system. Abstraction makes indirection
easier, and together the two principles make tractable computer sys-
tems of a scale unimaginable a few decades ago—all large-scale
computing systems today rely upon layer after layer of indirection
built upon an intricate weave of abstractions.

2.1 Computing and Society
Given the ubiquity of computing in wealthy nations today, the

impact of computing on society is self evident. However, the nature
of that impact—its benefits and drawbacks, its consequences and
character—is still far from clear and hotly contested. We do not
aim to recap the ongoing debates on this subject, but briefly note
below a few points relevant to this paper.

In his role as long-time technology journalist and pundit, Kevin
Kelly’s attempts to find a middle ground between techno-utopian
and techno-phobic arguments are well worth considering [5]. He
concludes that while technological solutions do almost always cre-
ate new problems (per Sevareid), in his view technological progress
is an unstoppable force and ultimately should be embraced. Thus
Kelly concludes that society should embrace the sisyphean task of
solving problems created by a previous generation of technology
while creating new ones in the process. While still techno-utopian
in many respects, Kelly’s view is more moderate than many tech-
nology commentators (and indeed many researchers and engineers)
who ignore or dismiss technology’s downsides.



Hidden in Kelly’s discussion are three issues that critics have
seized upon. First, technology often solves problems temporar-
ily, if at all, when evaluated holistically. Second, technology often
doesn’t even solve problems on its own terms—that is, even by the
metrics used by a technology’s proponents, it often fails. Third,
some technological solutions aim to address problems that are in
a fundamental sense unsolvable.1 Examples in each of these three
categories are numerous, and are staples of the work of polemi-
cists such as Morozov [11, 12]. Many of these hidden issues are
due to abstraction and indirection—consider the ways in which, for
example, friendships are cheapened by the abstraction and indirec-
tion introduced by social networking, or self-employed freelance
entrepreneurs are reduced to replaceable cogs in a task-based econ-
omy intermediated by various web services.

2.2 Benefits and Drawbacks
While we are concerned primarily with computing technology

here, the tangle of these three issues and of abstraction and indi-
rection are common in other disciplines as well. For example, the
woes of industrial agriculture could be seen as a consequence of the
abstraction of plants as machines that take water, N-P-K, and sun-
light and turn it into food; the abstraction of home mortgages and
bundling into complex financial instruments through many layers
of indirection was key to the financial crisis of 2008. It would be
worthwhile to examine whether abstraction and indirection are cen-
tral to solutions and their subsequent problems in many fields; in-
deed, given the complexity of today’s computing systems and their
importance to today’s society, understanding the benefits and draw-
backs of these principles when applied elsewhere is crucial.

By and large, abstraction and indirection have shown clear ben-
efits in solving problems in the design and implementation of
computing systems, so much so that they are sometimes jokingly
viewed as the only two ideas in systems research. When applied
within a system for its own purposes, it is relatively easy to identify
whether the indirection introduced yields a benefit or adds unneces-
sary complexity. Indeed, unnecessary complexity is one of the key
ways that indirection can go awry and cause drawbacks in excess
of benefits; this is true along the entire scale of systems of all types,
from a small piece of software to a civilization itself [18].

As Toyama notes, however, technology is only an amplifier of
human intent, and thus it is important in many of these instances—
both those examples hailed by Kelly and scorned by Morozov—to
note the benefits that a technology’s purveyors receive [20] (and in
many instances the drawbacks that they ignore). Even when ben-
efits and drawbacks are heeded, a technology’s amplification can
quickly get out of control if its power and subtle implications are
not understood in advance.

3. BENIGN COMPUTING
Many small things breed a kind of stability; a few big
things endanger it—better the Fortune 500,000 than
the Fortune 500 (unless you want to be an eight-figure
CEO).

–Bill McKibben [10]

There are many possible responses to the above issues, and in
this section we propose one possibility: benign computing, a gen-
eral design framework for building computing systems that are less
1Greer has advocated differentiating between problems that have
solutions and predicaments that have responses but no solutions [4].

likely to produce harmful impacts to the ecosystem (and thus to
human society) and are less likely to become trapped by Sevareid’s
Law. Here we only offer a vision of what benign computing might
become, in the form of design principles.

A key aspect of benign computing is a rejection of the utopian
notion of creating new technology that is strictly “beneficial” or
that advances “development”. Such efforts suffer from a number
of problems. First, benefit is always relative. Second, benefit, even
when broad-based, is often difficult to measure. Third, the tem-
poral profile of benefits and drawbacks can be complex for many
technologies—benefits can occur before drawbacks, or vice versa,
and worse still, even once drawbacks (or benefits) arrive they can
be hidden. Instead, the aim of benign computing is computing that
is of a scale and structure such that even if its downsides dominate,
its overall harm is small because they are made apparent.

3.1 Inspirations
Setting aside the proposed responses of ardent boosters of any

and all technological development and critics who suggest to throw
it all away, there are some healthy trends in computing research we
first consider for inspiration.

A positive trend is work in the field of Information and Commu-
nication Technology for Development (ICTD), which aims to use
computing to address urgent and practical needs in countries and re-
gions with fewer resources and less infrastructure, often employing
thinking from the older field of appropriate technology. ICTD has
advanced significantly in the past decade, and more importantly has
established the practice of defining clearly both the societal prob-
lems being solved and the measures used to evaluate impact. In
doing so, ICTD work has been more likely to yield intended social
impact, though the resulting “benefit” and “development” often re-
mains fuzzy.

While ICTD work often is careful in the means of implementa-
tion, focusing on “appropriateness” of the interventions applied and
systems built, it begins with an assumption of good intentions and
a judicious researcher employing the system for what is believed
to be a worthy end. However much of computing work, both in
academia and industry, is not done with social ends in mind; in-
stead, intellectual and financial ends dominate. Thus we must con-
sider how the notion of benign computing, which we detail below,
might co-exist with these motives.

Another promising but preliminary area of work is in
biomimicry, the design of systems that are modeled after nature.
The challenge for biomimicry is to integrate true ecological under-
standing into the mimicry being attempted, rather than decompos-
ing natural systems to identify pieces that serve specific needs. For
example, work on stigmergy in computing systems has the poten-
tial to increase system resilience.

3.2 Industry
A key challenge is that computing today has a thriving industry,

one that is naturally driven by profit motives.2 This motive is not a
problem in itself, but the manner in which computing startups aim
to “scale” rapidly as an individual organization is a fundamental
source of trouble. Indeed, computing startups (unlike in most other
industries) are expected to demonstrate hyper-growth. A startup
can in a matter of years have a direct impact on billions of peo-
ple, and profit handsomely doing so (usually via the application of
2This is less the case in many other engineering disciplines, and far
less the case in most scientific disciplines.



abstraction and indirection). The amplifying power of technology
today is at such a level that the power needs to be used wisely, and
there appears to be little understanding of the downside risks to
society that such power creates.

Ironically, this structure is at odds with a principle at the core of
modern distributed systems: horizontal scalability [1,14]. Horizon-
tal scalability—“scale out”—is an approach in which a system is
made faster and/or more resilient by adding more small units (e.g.,
individual computing nodes in a system) and is broadly favored
today over vertical scalability—“scale up”—in which the power
of a single machine is increased. However, when systems have
been scaled horizontally, they are then cloaked in an abstraction
that presents them as a single unified (large) system.

3.3 Principles
We contend that a different paradigm of computing research

and practice is possible, which we term benign computing. The
core aim of this paradigm is to make a technology’s benefits and
drawbacks more apparent to its designers, researchers, and imple-
menters, enabling a proper evaluation that might otherwise prove
difficult or inconvenient. In doing so, the aim is to help anticipate
drawbacks of a technology and to help preserve its potential ben-
efits, and to ensure that those benefits are more broad-based (i.e.,
that they are reflective of more than one perspective of “benefit”).

Here we describe several design principles that we believe
should be at the center of any work on benign computing. While
only the test of time will show whether this is truly possible and
whether these principles are the right ones, there is some evidence,
both anecdotal and in other fields, that these principles lead to good
results.
Scale-out. As we noted above, horizontal scalability—scale-out—
is already a common principle in distributed systems work, but this
is seldom then applied to the macro systems that they are support-
ing. There has been work on so-called federated systems, which
are of the flavor we advocate here—systems where the scaling out
is done by autonomous parties (i.e., under diverse administrative
control) and the system as a whole is a federation of these par-
ties’ systems. An advantage of scale-out in traditional settings is
that the failure of a few does not threaten the functioning of the
whole, and that to increase scale the whole system need not be re-
engineered. Beyond those settings, scale-out has the advantage that
a coalition of parties can decide to create an independent offering.
Indeed the systems built upon many of the early Internet protocols
(e.g., SMTP, NNTP) had this structure, though they have lost it over
the years.3

Fails well. Natural systems are complex; the weave of interdepen-
dencies in the global ecosystem is far beyond our understanding to-
day. Yet this complexity does not yield vulnerability of the sort ex-
hibited by complex human-made systems. A primary reason is that
complex human-made systems have only apparent complexity—
they seem complex, but have far fewer stabilizing backup systems
to ensure resilience, often because resilience requires sacrificing
3Consider the structure of Facebook vs. Craigslist: Facebook is
monolithic—while it uses scale-out in its datacenters, the service
offering as a whole is scale-up. Craigslist, on the other hand, is
scale-out in many ways, as the sites for each community could (in
theory) be spun off and run independently and diverge in its offer-
ings. For a service like Craigslist to fully become scale-out in the
manner we propose here, the service as a whole would be a fed-
eration of autonomous, regional Craigslists that are loosely tied by
APIs, protocols, and links.

system efficiency and leads to higher short-term costs. Natural
systems, on the other hand, have inherent complexity; while not
efficient in the way of many human technologies, they have signifi-
cant resilience to failure. Thus the evaluation of computing systems
should look beyond apparent complexity; that is, nature should be
mimicked in the ways it handles failure, not just in the ways it suc-
ceeds in normal operation.4

Open design. While open source software and hardware is impor-
tant, open designs are far more important. Open designs enable the
creation of a diversity of implementations, written by different au-
thors with different motivations but a common goal. This common
goal can be codified in the form of an RFC or similar design doc-
ument. In a scale-out system it is important that each independent
party can build upon a base design to create new, differentiated of-
ferings.
Self similar/fractal. Systems should be scale-out, open in design,
and fail well at every level of their structure. While many of today’s
large-scale distributed systems have these properties at some level
of their operation, few exhibit them at all levels. This fractal struc-
ture ensures that decoupling can occur at the level most appropriate
for it to occur.5

4. CONCLUSIONS
The principles we offer above are not in themselves new or deep.

Our only aim is to identify those approaches that can lead to a min-
imization of social harm should a system be recognized to be pri-
marily harmful. Ultimately these principles aim to limit structural
power—say, of the sort that large companies like Apple, Google,
Amazon, Microsoft, and Facebook wield today—by creating com-
puting systems that have a far greater underlying diversity, as in
nature. Crucially, systems that have greater underlying structural
diversity—and diffusion of power and control—can be more re-
sponsive to the needs of the local human and natural community.
As McKibben suggests, there is a resilience—not just resilience to
failure, but to unforeseen societal harms—that comes from a di-
versity of smaller parties providing a service instead of a smaller
number of big players. While adopting these principles in com-
mercial settings will be difficult, as they are likely to conflict with
profit motives, computer science researchers are not similarly con-
strained. Indeed these principles appear to be better aligned with
the role of research in society, as they enable a greater diversity and
debate of ideas and approaches. Whether they can be adopted and
supplant industry-driven “normal science” as it is practiced today
in computer science remains to be seen [7].

4To be more concrete, consider the Internet’s routing system.
While it is designed to be resilient to failure, its resilience is only
in one dimension—alternative paths on the data plane—and not in
control plane systems (e.g., backup alternatives for BGP), manage-
ment systems (e.g., the administrative control of large ASes), and
physical systems (e.g., IXPs, long-distance fiber bundles, etc.).
5For example, A federated alternative to Facebook might require
divergence/decoupling at the level of datacenter structure in one re-
gion where electric power availability is intermittent, while in an-
other might require it at the level of inter-region connections where
different privacy standards require different data retention behav-
ior for transient data. If the system were not fractal, some of these
decouplings would not be possible.



5. REFERENCES
[1] L. A. Barroso and U. Hölzle. The Datacenter as a Computer:

An Introduction to the Design of Warehouse-scale Machines.
Synthesis lectures on computer architecture, 2009.

[2] R. Carson. Silent Spring. Houghton Mifflin, 1962.
[3] J. K. Galbraith. The Great Crash, 1929. Houghton Mifflin,

1954.
[4] J. M. Greer. The Long Descent. New Society Publishers,

2008.
[5] K. Kelly. What Technology Wants. Penguin, 2010.
[6] Kevin Drum. America’s Real Criminal Element: Lead.

Mother Jones, January/February 2013.
[7] T. S. Kuhn. The Structure of Scientific Revolutions.

University of Chicago Press, 1962.
[8] M. Lewis. The Big Short: Inside the Doomsday Machine.

WW Norton & Company, 2011.
[9] B. Liskov. The Power of Abstraction. Turing Award Lecture,

2009.
[10] B. McKibben. Eaarth: Making a Life on a Tough New

Planet. Henry Holt and Company, 2010.
[11] E. Morozov. The Net Delusion: The Dark Side of Internet

Freedom. PublicAffairs, 2011.
[12] E. Morozov. To Save Everything, Click Here: The Folly of

Technological Solutionism. PublicAffairs, 2013.
[13] D. Pargman and B. Raghavan. Rethinking Sustainability in

Computing: From Buzzword to Non-negotiable Limits. In
Proceedings of ACM NordiCHI, 2014.

[14] D. A. Patterson, G. Gibson, and R. H. Katz. A Case for
Redundant Arrays of Inexpensive Disks (RAID). In
Proceedings of ACM SIGMOD, 1988.

[15] M. Pollan. The Omnivore’s Dilemma: A Natural History of
Four Meals. Penguin, 2006.

[16] B. Raghavan and J. Ma. Networking in the Long Emergency.
In Proceedings of the ACM SIGCOMM Workshop on Green
Networking, 2011.

[17] E. Sevareid. CBS News, December 29, 1970.
[18] J. Tainter. The Collapse of Complex Societies. Cambridge

University Press, 1990.
[19] B. Tomlinson, E. Blevis, B. Nardi, D. J. Patterson,

M. Silberman, and Y. Pan. Collapse Informatics and Practice:
Theory, Method, and Design. ACM Transactions on
Computer-Human Interaction, 2013.

[20] K. Toyama. Technology as Amplifier in International
Development. In Proceedings of iConference, 2011.


