
Recursive SDN for Carrier Networks

James McCauley

‡N
, Zhi Liu

†
, Aurojit Panda

‡

Teemu Koponen

⇧
, Barath Raghavan

N
, Jennifer Rexford

⌥
, Scott Shenker

‡N

‡
UC Berkeley,

N
ICSI,

†
Tsinghua University,

⇧
Styra,

⌥
Princeton

ABSTRACT
Control planes for global carrier networks should be pro-
grammable and scalable. Neither traditional control planes
nor new SDN-based control planes meet both of these goals.
Here we propose a framework for recursive routing computa-
tions that combines the best of SDN (programmability through
centralized controllers) and traditional networks (scalability
through hierarchy) to achieve these two desired properties.
Through simulation (on graphs of up to 10,000 nodes) we eval-
uate our design’s ability to support a variety of unicast routing
and traffic engineering solutions, while incorporating a fast
failure recovery mechanism based on network virtualization.

1 Introduction
Software-Defined Networking (SDN) has made great progress
in various contexts, most notably within datacenters and in
private WANs that interconnect datacenters. However, there
has been surprisingly little published work on using SDN in a
more traditional networking context: that of global-scale car-
rier networks (such as operated by Deutsche Telekom, France
Telecom, Verizon, NTT, AT&T, and others). These carrier net-
works are far more geographically dispersed than datacenter
networks (by roughly four orders of magnitude), while having
far more nodes than the global networks that are used solely
to interconnect those datacenters (by roughly three orders of
magnitude). There are SDN designs that can handle large
numbers of nodes (e.g., Kandoo [3]), and SDN designs that
can handle global networks that interconnect a limited number
of datacenters (e.g., B4 [5]), but to our knowledge there are no
SDN designs that simultaneously handle both the numerical
scale and geographic scope of today’s carrier networks.

This paper proposes a recursive approach to SDN routing1 –
called Recursive SDN (RSDN) – that leverages the hierarchi-
cal structure of carrier networks to achieve the programmabil-
ity of SDN networks while retaining the scalability (through
hierarchy) of legacy networks. In RSDN, each level of the
route computation acts on a set of aggregates (called logical
cross-bars, or LXBs), and then communicates a summary of
the results to the appropriate parent and child LXBs. This lim-
its the number of nodes any individual route computation has
to handle, while also ensuring that route computations are as
local as possible (i.e., only involve the affected LXB and, re-
cursively, its children).

1Where we use the term “routing” broadly to encompass the
choice of routes in unicast, multicast/anycast, and traffic engi-
neering.

It is important to clarify what RSDN does and does not do.
RSDN is a framework for scalable SDN routing, not a partic-
ular routing algorithm. That is, RSDN provides a recursive
structure for computing routes; a wide variety of recursive de-
signs for unicast routing and traffic engineering can be built
within this framework, as we illustrate later in this paper.2

Moreover, RSDN focuses only on edge-to-edge packet de-
livery, which is only a small subset of control plane function-
ality. In addition to routing, network control planes are often
used to enforce policies (e.g., through the use of ACLs) and
invoke middlebox functionality (by ensuring packets traverse
the appropriate middleboxes). We investigate none of these ad-
ditional tasks. Instead, we follow the approach espoused in [2]
and [13] in which all non-routing functionality is implemented
at the network edge (and need not be controlled by RSDN).
We adopt this approach because it can support the necessary
functionality while creating a network modularity with a clean
separation of concerns.

However, RSDN does more than merely facilitate route
computation. Because availability is a crucial requirement for
carrier networks, RSDN incorporates a mechanism for rapid
and localized recovery from failures that is independent of the
particular routing algorithm. Thus, RSDN is a framework that
both provides high availability and support for implementing
various routing algorithms. We now turn to its design.

2 Overview and Context
Recursive structure: RSDN exploits the locality that is found
in almost all networks (and particularly in carrier networks) by
clustering the network into aggregates, which we call logical
cross-bars (LXBs). These LXBs act like switches – they have
a set of external ports and can provide transit between those
external ports. We repeat this process of aggregation on the
LXBs to build a hierarchical structure with each k-level LXB
being comprised of multiple (k+1)-level LXBs, and with links
between the LXBs on the same level (or tier). For example,
levels of aggregation may include: PoP and/or datacenter, ac-
cess network, regional network, and country (or continental)
network. This kind of aggregation is standard in networking
(and, in particular, is used in approaches such as PNNI [11] to
aggregate the topology), but here we leverage the hierarchical
structure to form an explicitly recursive SDN control plane.
2The presentation here is a shortened version of a longer pa-
per [4] that contains more details about the design and our
performance results. In particular, discussion of RSDN’s ap-
proach to multicast, anycast and multipath routing is omitted
here entirely.

Control Logic 1
(e.g., Unicast)

Control Logic 2
(e.g., Anycast)

Control Logic N
(...)...

Parent messaging (if not root)

Child messaging

Child Graph

Figure 1: Software structure in a normal (non-leaf) LXB. Solid boxes
are parts of the framework, dashed boxes are “user”-provided control
logic. Leaf LXBs are similar, but include repair functionality, and the
bottom interface faces physical switches rather than child LXBs.

We associate a logical controller with each LXB; this con-
troller is aware of the parent LXB as well as the child LXBs
and the links between them, and handles all control plane com-
putations for the LXB (such as how to route between its child
LXBs). While it will typically be replicated across multiple
physical machines for reliability, this controller is – logically
speaking – a single entity.

This hierarchy of logical controllers provides a recursive
programming model (depicted in Figure 1), where for upward-
bound computations, each LXB accepts state from its chil-
dren, performs some local computation on this state, and then
exports information to its parent. Downward computations
are the inverse. The nature of the state being pushed up or
down and the nature of the local computation are fully gen-
eral, though a scalable control logic design is likely to make
state less detailed as it flows up the hierarchy, and more con-
crete and detailed as it flows down the hierarchy. Moreover,
computations need not be strictly upwards or downwards, but
can push information in both directions as needed.

In the simplest case, the same exact control logic code may
be run at all levels of the hierarchy, but sometimes there is ben-
efit in doing otherwise; e.g., one might use a different routing
algorithm within datacenters than is used between them.
Role of RSDN: RSDN is an unabashedly clean-slate design
intended to answer the fundamental (and previously unan-
swered) question of whether SDN could simultaneously cope
with the numerical scale and geographic scope of carrier net-
works. We do not presume that such a design can be easily de-
ployed in today’s carrier networks. We do, however, anticipate
that SDN technologies will incrementally work their way into
carrier networks, and thus – eventually – an RSDN-like system
spanning different levels of the network (e.g., within PoPs, dat-
acenters, access networks, regional networks, and continental
networks) may indeed be feasible.

To be clear, this recursive structure is not needed to ad-
dress either geographic scope or numerical scale by them-
selves. As shown by designs for interconnecting datacen-
ters (which have the former but not the latter) and controlling
datacenters (which have the latter but not the former), cur-
rent SDN approaches suffice for each challenge individually
(though RSDN may provide a cleaner and more flexible scal-
ing story than current datacenter designs). Recursion is only
needed when confronting these dual design challenges simul-
taneously, which most notably occurs when trying to design a
coherent control plane for carrier networks.

While RSDN is a clean-slate design for providing the core
routing functions of carrier networks, it can cleanly coexist
with other aspects of carrier control planes (whether legacy or
not) that can be implemented at the edge (such as BGP, access
controls, and middlebox insertion).

What Matters: Issues like route computation time, path
stretch, and routing state are important properties of a routing
algorithm. However, RSDN supports a wide variety of route
computation algorithms offering a range of tradeoffs between
these metrics. Thus, while these quantities are important for
evaluating whether a particular route computation algorithm is
suitable for a given network, they are not properties of RSDN
itself. What really matters about RSDN is whether: (i) RSDN
enables a broad enough class of routing algorithms (broadly
defined) to meet various needs and (ii) RSDN-controlled net-
works can respond quickly enough to failures to achieve high
availability. The first issue is addressed by our description and
evaluation of two unicast routing schemes (Section 3) and two
traffic engineering schemes (Section 4). The second issue is
addressed by our inclusion of a network repair mechanism in
RSDN (Section 5), which provides – independent of any rout-
ing algorithm – a rapid failure recovery mechanism.
Related Work: While we lack space to cover related work in
any detail here (see our longer submission [4] for an extended
treatment), we do wish to touch on a few salient items. First,
RSDN shares a number of attributes with many systems de-
scribed in the vast literature on area-based and recursive rout-
ing. To be clear, we make no claim of novelty for hierarchical
routing, since the basic notion is almost as old as routing it-
self [7]. But RSDN is not a routing algorithm or protocol.
Rather, it is a software framework for the programmatic and
recursive computation of the various aspects of routing (e.g.,
unicast, traffic engineering) – the specific routing algorithms
we discuss below are merely examples.

In terms of applying SDN to global-scale networks, B4 is
the most relevant work [5]. B4 is a sophisticated traffic engi-
neering solution for a network that interconnects a few dozen
Google datacenters, and we see it as a brilliant solution to a
different problem. As a routing control plane, we note that
B4 copes with geographic scope, but not numerical scale. As
an exercise in traffic engineering, B4 leverages the ability to
control its own traffic at the edge and to give some traffic low-
quality service in order to achieve extremely high utilizations;
in the traffic engineering designs we present here (which more
closely represent current carrier requirements), we do not as-
sume one can throttle edge traffic nor that there are low-quality
classes of service one can use to keep utilization high.

RSDN’s network repair algorithm is a generalization of link
protection (as in MPLS FRR [10]) and an application of net-
work virtualization (similar to that described in [1]), and thus
has roots in the previous literature, but we are not aware of any
existing work that combines them in the way we do here.
Topologies: To evaluate RSDN, we performed simulations on
synthetically generated graphs with three levels of hierarchy
(in which we ignore the tree-like access networks where rout-
ing is trivial). Our randomized topology generator is generally
consistent with the description of “heuristically optimal” net-
works described in [8], and we varied our topologies across
two dimensions – size (little, medium, big) and degree of con-
nectivity (low, medium, high) – resulting in nine topologies
varying from 119 to 255 switches and from 224 to 547 links.
We assigned latencies to the links in these topologies reflect-
ing their structure (i.e., links within an LXB had smaller la-
tencies than those between them), and in our results on stretch
we report on both the hopcount and latencies of the end-to-
end paths. To demonstrate RSDN’s ability to scale, our uni-

cast routing simulations focus on larger topologies with sizes
between approximately 1, 000 and 10, 000 switches, and de-
grees of connectivity spanning over a factor of three (ranging
both above and below what we believe to be realistic). The
other topologies are smaller because computing the optimal
non-RSDN traffic engineering solutions (which we need for
comparison) on large networks is overly time consuming.

3 Unicast Routing
As mentioned above, although RSDN supports routing, RSDN
is not a routing protocol. One key difference is that non-SDN
routing protocols are often monolithic, conflating separable is-
sues such as topology discovery, link state discovery, and route
computation. When treating networking as a software prob-
lem, however, these may be factored more cleanly. For exam-
ple, in our discussion of RSDN routing in this section, we are
strictly considering the problem of route computation. That is,
we do not discuss mechanisms for discovering the topology or
the state of links within the topology. While these aspects of
the overall routing problem can be built as additional, largely
decoupled control logics fitting into the RSDN framework, we
do not focus on them here: state discovery varies depending on
the link type and is typically not deep (e.g., just a mechanism
for forwarding the results of a BFD [6] agent up to the appro-
priate tier), and topology discovery does not apply to the use
case we are examining in this paper (in carrier networks, the
topology is carefully planned and centrally mapped; we thus
assume that each controller is simply given a list of the links it
“owns” – the ones between its child LXBs).

That said, the design space for unicast routing solutions is
vast. The goal of RSDN is not to pick one particular approach,
but to enable operators to choose one that is suited for their
needs while leveraging the recursive structure of RSDN to
scale. To illustrate how RSDN supports route computation,
we discuss two representative examples: Fine-Grained Rout-
ing (FGR) and Coarse-Grained Routing (CGR). They are both
implemented using an up-phase and then a down-phase, where
one should think of the upward pass as when LXBs collect in-
formation from their child LXBs (or from physical switches at
the base of the hierarchy) and summarize it for their parents,
and the downward pass as when LXBs select routes and then
pass on the results to their children, providing enough context
for the children to do the same for their children.

FGR uses a recursive approach to compute shortest paths
across an entire RSDN network. In the upward pass, each
LXB’s controller computes shortest paths between each of its
border switches (that is, switches with links which reach out-
side the LXB). These are pushed upward to the parent con-
troller as a distance matrix. Once the parent has distances be-
tween the borders of its children, it can compute shortest paths
between its own border ports which it pushes up to its own
parent. In the downward phase, controllers push down actual
forwarding rules based on the paths computed during the up-
ward phase. These accumulate down the hierarchy; when the
base is reached, the forwarding state is complete.3 FGR scales
better than a flat shortest path computation because of infor-
mation hiding (a parent’s view of its children is only in terms

3The only case where FGR does not yield shortest paths is
when the shortest path must exit and later re-enter the same
LXB. Such cases did not occur in our topologies and support-
ing them seems unnecessary.

Tier CGR FGR APSP
3 0.407s 0.391s —
2 5.709s 6.036s —
1 6.745s 6.811s —
0 (Root) 7.215s 249.081s 682.452s

Table 1: Times to run computation on topology X up to a given level
in the hierarchy using FGR, CGR, and an all-pairs shortest path algo-
rithm over the entire topology (APSP).

Figure 2: The CDF of network stretch (as fractional increase over the
original path) for CGR on topology X.

of distance matrices between their border switches) and paral-
lelization (controllers on a tier can operate in parallel).

CGR is a coarser grained approach to address cases where
FGR does not scale sufficiently. We do not have space to de-
scribe the algorithm in detail, but the starting point for the de-
sign is to only compute shortest paths between siblings. How-
ever, to reduce stretch, we found it useful to extend the compu-
tation to find shortest paths from a switch to the closest switch
in the LXB which contains the destination and is a sibling of
the LXB containing the source. Upon reaching this “closest”
switch, the process repeats recursively one tier down the hier-
archy until the final destination is reached. See [4] for details.

3.1 Performance of Routing Algorithms
We chose FGR and CGR merely to demonstrate that RSDN
could incorporate widely varying routing designs, and there
are many other routing designs one could devise, but here we
discuss how FGR and CGR perform in terms of stretch, com-
putation time, and routing table size. For clarity, our pre-
sentation focuses on results from a single very large topol-
ogy (“topology X”) which has 10, 355 switches and 47, 595
links with a mean link latency of 14.584ms. However, we
also performed extensive experiments with other topologies
mentioned in Section 2, and the general conclusions we draw
here about RSDN’s performance are consistent with the results
from those additional experiments.
Computation Time: We compared our Python RSDN route
computations with a Python All-Pairs-Shortest-Path (APSP)
computation. The numbers here are not indicative of how an
optimized C++ computation would perform, but the relative
performance provides some measure of the underlying com-
putational complexities. Route computation times are shown
in Table 1 for FGR and CGR up to each tier (this is relevant
because after an initial computation, one only needs to recom-
pute to establish good routes after a failure; in only very few
cases – a failure of a country-to-country link in our topologies
– does this require recomputing all the way up to the root).
Note that FGR beats APSP due to RSDN’s parallelization even

Routing Label LPM
Cons.

LPM
Rand.

CGR 211.56 382.09 13088.38
FGR 2942.76 1296.02 41206.13

Table 2: Average table size with labels, highly-aggregatable (consec-
utive) IP prefixes, and poorly-aggregatable (random) IP prefixes.

though they both compute globally shortest paths. CGR trades
off path length for significantly better performance.
Stretch: FGR computes exact shortest path routes, so there
is no stretch. The stretch induced by CGR on topology X is
summarized in Figure 2, which shows the CDF of stretch over
all source-destination pairs using both hopcount-based routing
and latency-based routing.4 For hopcounts, fewer than 15%
of the pairs have stretch over 10%, while for latency, approx-
imately 5% do. These latency results were quite consistent
with the average of the additional topologies we tested: 75%
of the paths have no additional stretch and 92% of the paths
have have less than 10% stretch. For hopcount-based rout-
ing on these additional topologies, the results were somewhat
worse: 70% of the paths have no additional stretch, 73% of
the paths have have less than 10% stretch, though 93% of the
paths have less than 20% stretch.
Table Size: RSDN can incorporate a variety of approaches to
forwarding tables and address assignments, and here we dis-
cuss two of them. First, we considered an MPLS-like scheme
where one or more labels are applied to the packet at the net-
work edge, and all forwarding is done on these labels. Ta-
ble 2 shows the resulting average forwarding table sizes that
arise using this approach for both FGR and CGR on topol-
ogy X, with CGR being significantly smaller than FGR (about
93% savings). We then tried using IP addresses for forward-
ing (with LPM aggregation in the tables) considering two ad-
dress allocation schemes. The first took a set of 495k pre-
fixes from Route Views [12] and assigned them consecutively
to the exterior ports (putting the same number of prefixes on
each port); the second assigned these randomly to the exterior
ports. Unsurprisingly, the easily aggregated consecutive as-
signment yielded smaller tables, though CGR provided about
70% savings for both. These results show that: (i) RSDN can
use either labels or aggregatable addresses, and (ii) if small ta-
ble size is important, CGR provides an effective and relatively
low-stretch way of accomplishing this (with either labels or
reasonable address allocation).

4 Traffic Engineering
As with unicast routing, our goal here is not to pioneer new TE
paradigms but instead to merely show that RSDN can scalably
achieve TE goals. There are many TE designs, but most of
them can be grouped into two categories. In the first, the traf-
fic matrix is fed into an offline solver that generates optimal
routes. The second is used in conjunction with multipath rout-
ing: a feedback system relays congestion information about
a path to its source, and the source preferentially steers traf-
fic over less-loaded paths. We have implemented recursive
versions of both approaches, which we term Recursive Linear

4Latency-based routing minimizes path length in terms of dis-
tances, and thus takes into account the geography as deter-
mined by our topology generator.

Topology RLP RST None G-S
little-low 1.00 1.00 1.48 1.00
little-med 1.00 1.00 1.60 1.00
little-high 1.00 1.00 1.20 1.00
middle-low 1.00 1.22 2.22 1.00
middle-med 1.00 1.00 1.58 1.00
middle-high 1.00 1.00 1.84 1.00
big-low 1.00 1.00 1.79 1.00
big-med 1.00 1.00 1.56 1.00
big-high 1.00 1.00 1.87 1.00

Table 3: Maximal link load normalized by that achieved by the glob-
ally optimal gold-standard on the nine topologies (labeled by their rel-
ative size and connectivity).

Figure 3: CDF of the load on links in the big-med topology when
using each of the traffic engineering methods.

Programming (RLP) and Recursive Split Tuning (RST), and
where the latter is enabled by a multipath variant of FGR.

For our evaluation, we focus purely on whether good routes
can be chosen, and ignore real-world issues such as flow di-
visibility and packet reordering (which are issues for any TE
design). The metric by which we evaluate TE is the utiliza-
tion level of the maximally loaded link, which should be min-
imized. We compare both of our RSDN TE implementations
against a “gold standard” – a straightforward global linear pro-
gram that achieves the minimum possible value of this metric.

We evaluate TE by running simulations on the nine topolo-
gies described in Section 2. Table 3 shows the worst-case link
load for RLP and RST and compares them to the results from
the global optimal (against which all the results are normal-
ized) and from merely using shortest-path routing with no TE.
In all cases, RLP matches the performance of optimal to within
less than a percent. RST is also generally within a percent of
optimal; a single case misses by 22%. Additionally, leveraging
locality means the recursive approaches converge faster: on
average, RLP reaches its best case in 65% of the time needed
by the gold-standard, and RST in only 15%.

In Figure 3 we look at the distribution of link loads in one of
the topologies. While the goal of the gold-standard TE algo-
rithm is only to minimize the maximal load, the RLP and RST
algorithms do a better job of spreading the load around (even
if they cannot always achieve the same mini-max load). That
is, RLP and RST have fewer highly loaded links compared to
the gold-standard, having pushed some of that load off to more
lightly loaded links; the gold-standard does not bother trying
to decrease loads on less-than-maximally-loaded links (such
load spreading could be made an objective of a global solver,
but comes “for free” with our recursive approach).

Nbr[a] Neighbors of a
HavePath Nodes to which a already has a path.
NeedPath Nodes to which a needs a path.
Vnodes Nodes that a “virtualizes” (includes the

forwarding table for)
EnsurePath(a,b) Ensures that there is a path between a

and b considering the current state of
the network. Returns true if the link
between a and b is up, has working link
protection, or if a repair path can be
computed.

Table 4: Network repair sets and functions for node a.

5 Network Repair
While the previous two sections have examined control logic
written using the RSDN framework, this section examines a
feature of the framework itself, which all control logics auto-
matically benefit from: network repair.

A common practice for improving network availability is
to implement link protection, in which for every link between
two routers (or nodes, in the text below) a and b, an alternate
path (not including that link) is precomputed and then imme-
diately used as a failover route when the link goes down. This
works as long as the failover route remains up, but cannot cope
when multiple failures knock out both the link and the failover
path. RSDN uses link protection, but then adds a more general
network repair mechanism that can recover from all failure
scenarios (as long as a path exists).

Our network repair approach is inspired by network virtu-
alization. When routes are computed, we note the state of the
network (i.e., which nodes and links are up). We then embed
a virtual version of this network within whatever the current
physical network happens to be; this virtual network clearly
supports the previously computed routes, so they need not be
recomputed. Note that RSDN’s repair approach does not rely
on the recursive structure and could therefore be implemented
on any SDN network.

To understand our repair algorithm, consider a particular
network state (in terms of which nodes and links are up and
down), and the sets and functions shown in Table 4; the net-
work repair algorithm at node a is as given in Algorithm 1. Af-
ter applying this simple procedure for each node, every node
a has a set of internal tables that can be used to virtually route
through unreachable nodes. That is, suppose that if a were
to send a packet destined for some node x, its first two hops
would ordinarily be nodes b and c. When a link fails, if the
responsible controller discovers that a can no longer reach b

(because EnsurePath(a,b) fails), then the controller virtu-
alizes b within a (by including b’s routing table in a), deter-
mines where b would have sent the packet (in this case, node
c), and computes a repair path to c using EnsurePath(a,c).
If this succeeds, then a can forward the packet directly to c; if
it fails, then the procedure recurses and a imports c’s routing
table, determines where c would have routed the packet, and
then attempts to directly route to that node.

This procedure is initiated whenever a neighbor fails (or
otherwise becomes unreachable), and results in a working set
of routing tables. The computational complexity of this op-
eration scales not with the overall network size but with the
complexity of computing repair paths between nearby nodes
(i.e., when EnsurePath finds that there is no direct or pro-
tected link between a and b and must compute a new path).

Algorithm 1 Network Repair Algorithm.
. Repair algorithm for node a
NeedPath Nbr[a] . Initialize NeedPath
HavePath ; . Initialize HavePath
Vnodes { a } . Initialize Vnodes
while NeedPath 6= ; do

b member(NeedPath) . Take element b
NeedPath NeedPath�b
if EnsurePath(a,b) = true then

. If we can find a path from a to b, we’re done
HavePath HavePath [b

else
. If no path is found, virtualize b
Vnodes Vnodes [b
. Need paths to neighbors of b that we can’t reach yet
NewNbrs Nbr[b]�HavePath�Vnodes
NeedPath NeedPath [NewNbrs

end if
end while

Figure 4: CDF of CPRP (x-axis) for no recovery, link protection, and
RSDN repair on the big-med topology under the light failure scenario.

The maximal distance between any two nodes where this func-
tion is invoked is the most consecutive unreachable nodes in a
path. It is very unlikely that this distance will ever be more
than a few hops.

5.1 Evaluation of Network Repair

When considering failures, we ran experiments using a failure
model based on [9], which randomly fails and recovers links
according to distributions measured in the Sprint network, and
apply this same model to switches. We looked at a variety of
failure scenarios, but only report on two here: where links fail
at an average rate of once per day, and where they fail once per
ten days. In each case we arbitrarily set the node failure rate
to half of the link failure rate.

Since no recovery mechanism can provide connectivity
when the physical network is disconnected, the appropriate
performance metric is the percent of time physically connected
pairs are connected by routing; or, for short, the connectivity
of the physically reachable pairs (which we denote by CPRP).

In analyzing the performance of network repair, we make
the following two assumptions. First, we only consider fail-
ures once they have been detected by the sending switch, since
there is nothing a routing or recovery mechanism can do to
deal with undetected failures (other mechanisms – such as for-
ward error correction over multiple paths – can deal with this
eventuality, but simple routing itself cannot). Second, we as-
sume that the time to repair a failure is, on average, 50ms. This

Sim. Topo None Link Repair

light
big-low 97.8% 99.79% 99.999977%
big-med 98.7% 99.85% 99.999982%
big-high 98.1% 99.77% 99.999983%

heavy
big-low 82% 96.2% 99.99979%
big-med 86% 97.9% 99.99983%
big-high 85% 96.1% 99.99982%

Table 5: Average CPRPs for no recovery, link protection, and RSDN
repair on all big topologies under light and heavy failure scenarios.

is based on estimates of how long it takes (i) for messages to
travel from switch to controller and back (to which we allo-
cate 10ms in each direction, which is roughly the average over
all switch-to-controller latencies in our topologies; this num-
ber is low because most links are quite local to their bottom-
tier controller), (ii) for the controller to compute repair paths
and generate a response (to which we allocate 10ms, which is
more than reasonable),5 and (iii) the time it takes to install new
routes (to which we allocate 20ms). This last quantity is by far
the most variable, as it depends on the number of routes, the
router technology used, and other factors outside our control.
Significantly, note that exact-match insertions (as in MPLS,
which can be used for internal forwarding in RSDN) are typ-
ically far faster than when inserting for LPM. Perhaps even
more significantly, note that this number can shrink with im-
proved router technology (whereas the others are due to more
inherent limitations).

We present performance results of network repair on the
three big topologies used in Section 4; we also ran these same
experiments using the topologies of other sizes from Section 4,
but omit the (similar) results here for space. We considered
three possible strategies: (i) no recovery, (ii) recovery using
only link protection, and (iii) RSDN’s network repair (which
includes link protection). We then recorded what fraction of
paths between all source-destination pairs are connected by
the three recovery strategies over two days of simulated time.

Table 5 shows the CPRP for these three graphs under the
two failure scenarios. Note that even under the heavy failure
scenario, where links are down roughly 5% of the time, net-
work repair is able to provide “five 9s” of CPRP, while no pro-
tection offers no 9s and link protection offers a single 9. This
high relative availability is because – in addition to covering
the exact same failures that link protection covers in exactly
same way – network repair can recover from all failures (sub-
ject only to table size limits on the switch), and link protection
simply cannot. The only reason that repair does not achieve
the maximum possible connectivity is due to the 50ms delay
when controller involvement is required. Figure 4 shows the
CDF of availability for the big-med graph under the light fail-
ure scenario. Here we see that the network repair results are
almost the same as physical availability, and link repair trails
noticeably behind (the heavy failure scenario – not shown here
– being even more dramatic).

One might be surprised that such a mechanism can provide
five 9s when the Internet is generally deemed to be less than
three 9s. The distinction is that we are not counting the case
5For all of the simulations, we also measured the time taken
to compute the on-demand repair paths and found it to be min-
imal. The mean time spent per failure is less than 0.5ms and
the maximal time less than 10ms for all controllers combined
– and this is for completely unoptimized Python code.

where the network is physically disconnected (since neither
routing nor repair can help there) and are only measuring the
availability for the physically connected pairs. What we show
is that with network repair, the routing algorithm is no longer
the availability bottleneck, regardless of the routing algorithm.
Instead, the availability bottleneck is strictly physical connec-
tivity, which must be addressed by other means.

6 Discussion
In this paper we propose RSDN as a way to manage global-
scale carrier networks. Our focus is on how to scale the func-
tionality that belongs in the network core (unicast, multicast,
traffic engineering, etc.), leaving all other functionality to the
edge. We find that RSDN provides a clean way to implement
a range of designs over hierarchical network infrastructures.
The routing designs presented here are not novel in them-
selves. Instead, the main contributions of RSDN are (i) a flexi-
ble and explicitly recursive programming model (which makes
it easier to implement scalable versions of these and other rout-
ing designs) and (ii) an integrated network repair mechanism
that improves possible availability by several orders of magni-
tude over simple link protection (relieving routing designs of
the responsibility to respond quickly to failures).

Finally, RSDN is an exercise in clean-slate design, with no
obvious incremental deployment path. However, the approach
advocated here, of a recursive interface and a repair mecha-
nism, could easily be integrated into current SDN controllers.

7 References

[1] M. Casado, T. Koponen, R. Ramanathan, and S. Shenker.
Virtualizing the network forwarding plane. In Proc. of
PRESTO, 2010.

[2] M. Casado, T. Koponen, S. Shenker, and A. Tootoonchian.
Fabric: A retrospective on evolving SDN. In Proc. of HotSDN,
2012.

[3] S. Hassas Yeganeh and Y. Ganjali. Kandoo: a framework for
efficient and scalable offloading of control applications. In
Proc. of HotSDN, 2012.

[4] J. McCauley, Z. Liu, A. Panda, T. Koponen, B. Raghavan, J.
Rexford and S. Shenker. Recursive SDN for carrier networks.
arXiv:1605.07734 [cs.NI], 2016.

[5] S. Jain, A. Kumar, S. Mandal, J. Ong, L. Poutievski, A. Singh,
S. Venkata, J. Wanderer, J. Zhou, M. Zhu, J. Zolla, U. Hölzle,
S. Stuart, and A. Vahdat. B4: experience with a
globally-deployed software defined WAN. In Proc. of
SIGCOMM, 2013.

[6] D. Katz and D. Ward. Bidirectional forwarding detection
(BFD). RFC 5880, 2010.

[7] L. Kleinrock and F. Kamoun. Hierarchical routing for large
networks – performance evaluation and optimization. Computer
Networks, 1(3), 1977.

[8] L. Li, D. Alderson, W. Willinger, and J. Doyle. A
first-principles approach to understanding the Internet’s
router-level topology. In Proc. of SIGCOMM, 2004.

[9] A. Markopoulou, G. Iannaccone, S. Bhattacharyya, C.-N.
Chuah, and C. Diot. Characterization of failures in an IP
backbone. In Proc. IEEE INFOCOM, 2004.

[10] P. Pan, G. Swallow, and A. Atlas. Fast reroute extensions to
RSVP-TE for LSP tunnels. RFC 4090, 2005.

[11] Private Network-Network Interface specification version 1.1
(PNNI 1.1), 2002. ATM Forum.

[12] University of Oregon Route Views project.
http://www.routeviews.org/.

[13] S. Shenker. Software-Defined Networking at the crossroads,
2013. https://youtu.be/WabdXYzCAOU.

http://www.routeviews.org/
https://youtu.be/WabdXYzCAOU

	Introduction
	Overview and Context
	Unicast Routing
	Performance of Routing Algorithms

	Traffic Engineering
	Network Repair
	Evaluation of Network Repair

	Discussion
	References

