
Tools for Disambiguating RFCs
Jane Yen

University of Southern California
yeny@usc.edu

Ramesh Govindan
University of Southern California

ramesh@usc.edu

Barath Raghavan
University of Southern California

barathra@usc.edu

Abstract

For decades, drafting Internet protocols has taken signifi-
cant amounts of human supervision due to the fundamental
ambiguity of natural language. Given such ambiguity, it is
also not surprising that protocol implementations have long
exhibited bugs. This pain and overhead can be significantly
reduced with the help of natural language processing (NLP).

We recently applied NLP to identify ambiguous or under-
specified sentences in RFCs, and to generate protocol imple-
mentations automatically when the ambiguity is clarified.
However this system is far from general or deployable. To
further reduce the overhead and errors due to ambiguous
sentences, and to improve the generality of this system, much
work remains to be done. In this paper, we consider what it
would take to produce a fully-general and useful system for
easing the natural-language challenges in the RFC process.

CCS Concepts

• Networks→ Formal specifications.

Keywords

natural language, protocol specifications

ACM Reference Format:

Jane Yen, Ramesh Govindan, and Barath Raghavan. 2021. Tools for
Disambiguating RFCs. In Applied Networking Research Workshop
(ANRW ’21), July 24–30, 2021, Virtual Event, USA. ACM, New York,
NY, USA, 7 pages. https://doi.org/10.1145/3472305.3472314

1 Introduction

It has long been the case that protocol behaviors are dis-
cussed and debated in the networking community for years
before they are codified. The Internet Architecture Board
(IAB) [9], Internet Engineering Task Force (IETF), and In-
ternet Research Task Force (IRTF) [12] enable groups of in-
dependent networking professionals to draft Request for

Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. Copyrights for third-
party components of this work must be honored. For all other uses, contact
the owner/author(s).
ANRW ’21, July 24–30, 2021, Virtual Event, USA
© 2021 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-8618-0/21/07.
https://doi.org/10.1145/3472305.3472314

Comments (RFCs) to explain their networking ideas in Eng-
lish. Their aim is to publish their ideas globally and, typically,
to codify those ideas as a networking standard. Draft RFCs
are carefully evaluated and reviewed by members of work-
ing groups and editors; these individuals manually consider
editorial and technical perspectives. Though the process
by which RFCs are developed is effective, and can identify
significant vague, incorrect, or partial descriptions and get
authors to their drafts, the overall overhead of this human
supervision is significant.

RFC editors follow a number of guidelines to review RFC
drafts and provide feedback to the authors; authors typically
aim to satisfy the guidelines as quickly as possible so that the
back-and-forth review process can be minimized. The guide-
lines mostly address what sections are required to be present,
what order the sections should be in, what minimal infor-
mation should be stated clearly, and so forth. While these
guidelines help drafts across time and space to maintain a
uniform style, these guidelines are mostly writing advice and
do not effectively help authors or reviewers to identify tech-
nical issues. To tackle technical concerns in any RFC draft
requires participants’ professional background knowledge.

RFC authors have many ways to describe technical details,
including natural language, pseudocode, formal specifica-
tions, real code, state machine diagrams, and more. While
pseudocode, formal specifications, and real code can provide
precise execution steps, natural language is still preferable
due to its flexibility and readability. However, natural lan-
guage can also be fuzzy, which sometimes leads to a fun-
damental technical problem. For example, "the type code
changed to 0" is a verbatim sentence in Internet Control
Message Protocol (ICMP) RFC [23]. The noun phrase "type
code" can confuse a reader as to whether it refers to as a type
named "code" or a code named "type" or a specific protocol
header field named "type code". If any reader interprets the
noun phrase incorrectly, a packet may be generated incor-
rectly and get dropped by a receiver.
To strike the right balance when using natural lan-

guage, we might ask the following question: Can we

systematically identify natural language ambiguity

in network protocol specifications and make changes

accordingly? The answer to this question would help
many stakeholders in the context of protocol specifications.
For example, working groups and standards writers could
leverage techniques to avoid or reduce back-and-forth

https://doi.org/10.1145/3472305.3472314
https://doi.org/10.1145/3472305.3472314


ANRW ’21, July 24–30, 2021, Virtual Event, USA Jane Yen, Ramesh Govindan, and Barath Raghavan

communication with RFC editors to speed up the RFC
publication process. RFC reviewers could benefit from
less work to pinpoint textual ambiguity. Those who build
reference implementations could leverage such automated
ambiguity analysis to develop assertions and/or unit
tests, or relax some constraints to accommodate different
implementations for interoperability (Figure 1).
In this paper, we first review how a typical RFC is writ-

ten and reviewed, and consider quantitatively how many
drafts are reviewed per year. Then we consider what tools
have the potential to improve the whole RFC authoring and
publication process. We envision additional tools that can
be used to reduce ambiguities from natural language de-
scriptions and can be used to generate code, if applicable,
for verifying logical/functional objectives. We then consider
both what aspects of ambiguity have been addressed in prior
research and what remains to be understood. In this context,
we introduce our recent work, sage [27], which identifies
ambiguities in protocol specification text with Combinatory
Categorial Grammar (CCG) [3] analysis, disambiguates with
set of rules, and, given unambiguous specification text, per-
forms per-sentence translation to C++ code. In that work
we considered how to handle packet generation and session
management across multiple protocols. However, sage is not
fully general nor is it usable by the average RFC author or
editor. Thus, finally, we discuss what remains to be explored
to further reduce the effort required of a human editor.

2 Overview

In this section, we describe what is currently entailed in writ-
ing an RFC (though our description is oversimplified). With
an understanding of which procedure takes significant hu-
man effort, we point out what mechanisms would be helpful
to improve the end-to-end RFC publication process.

2.1 RFC drafting and reviewing process

An RFC is generated to describe one or more networking
behaviors, where such behaviors are usually related to how a
networking system/protocol works. For RFC authors/drafters
to design such a system/protocol, one common approach
is to alternate between spec writing and implementation,
revising both until they are satisfied with a final version
(Figure 2). After a draft is generated it is often shared within
a working group and then eventually will make its way
to an RFC editor for review. An RFC editor may perform
similar steps to comment on RFC drafts, to consider any
unclear/confusing descriptions; the editor may request the
RFC’s authors revise according to those comments. In some
cases, when a reference implementation is provided, software
verification methods can also be applied to discover design
flaws. This potentially assists RFC authors to reflect changes
in both RFC drafts and system code.

Year 2016 2017 2018 2019 2020
RFC Count 310 263 208 180 209

Table 1: RFCs reviewed per year from 2016 to 2020.

2.2 Human effort in specification review

To understand how much effort is put into publishing RFCs
each year, we collected the number of reviewed RFCs from
the RFC editor site (Table 1) [11]. We note that an RFC doc-
ument is usually tens of pages of text. Therefore, roughly
speaking, the networking community is drafting and review-
ing thousands of pages of specification text in total every
year. Many of these drafts likely contain language ambigutity,
making this work quite challenging.

2.3 Tools in the publication process

We identify two additional kinds of tools that can be added
in the RFC publication process to reduce the work that must
be done by the people involved in the process.
Ambiguity identification. In the process of drafting and
reviewing RFCs (Figure 2), RFC drafters may encounter a
problem: readers may interpret a statement inconsistently
with respect to the drafters’ intention. Before reaching agree-
ment with editors or reviewers, drafters have to repeat the
process of editing drafts, waiting for reviews, and repeat-
ing this process through multiple rounds of feedback and
revision. A tool that can reduce the tedious nature of this
process may be one that can identify ambiguities in natural
language sentences.
Compilation from natural language to code. RFC
drafters commonly write their system or reference code
and RFC drafts in parallel. While the drafters may believe
their translations between RFC drafts and reference code
are consistent, they cannot always guarantee that natural
language sentences and implementations are logically
equivalent. When such inconsistency occurs, as it always
does, if no reference code is provided, readers of RFCs have
to depend on natural language sentences and implement
a potentially non-interoperable implementation. Even if
reference code is provided, readers may also get confused
about whether to depend upon the natural language text or
the reference code, which may lead to the specification and
the protocol "in the wild" diverging. To reduce the frequency
of such an inconsistency problem, one useful tool could be
a compiler that takes in natural language descriptions and
turns the descriptions into intermediate representation such
as pseudocode, formal specifications, or executable code.
Such a tool need not provide a unique implementation of
the specification, but simply provide a piece of code that can
used to verify if the functionality is logically equivalent.



Tools for Disambiguating RFCs ANRW ’21, July 24–30, 2021, Virtual Event, USA

Figure 1: The RFC editing process.

Figure 2: The process of drafting and reviewing RFCs.

As we previously mentioned, since RFC drafters may im-
plement their system alongside the specification, neither may
be representative of the community’s norms or expectations.
Building an implementation without a specification can be
challenging. With a compiler that converts natural language
into some form of code, RFC drafters can leverage the com-
piler’s output and use verification tools to discover hidden
bugs, speeding up the process of perfecting the design and
reflecting the requisite changes in RFC drafts.

3 Related Work

3.1 Formal specification languages

Over the past few decades, numerous protocol languages
have been proposed to mitigate the challenges of using
natural language. Estelle [8] and LOTOS [6] provided for-
mal descriptions for OSI protocol suites to properly specify
protocol behaviors. Moreover, Estelle used finite state ma-
chine specs to depict how protocols communicate in paral-
lel, passing on complexity, unreadability, and rigidity [7, 25,
26]. Other research such as RTAG [2], x-kernel [13], Mor-
pheus [1], Prolac [16], Network Packet Representation [21],
and NCT [20] gradually improved readability, structure, and
performance of protocols, spanning specification, testing,

and implementation. However, the networking community
has found through experience that English-language specifi-
cations are more readable than such protocol languages.

3.2 Protocol analysis

Some previous research also developed techniques to rea-
son about protocol behaviors in an effort to minimize bugs.
One such direction is to use specifications of finite state ma-
chines, higher-order logic, or domain-specific languages to
verify protocols [4–6]. Another thread of work [14, 15, 18]
explores the use of explicit-state model-checkers to find bugs
in protocol implementations. This thread also inspired work
(e.g., [22]) on discovering non-interoperabilities in protocol
implementations. While we share a similar goal—to iden-
tify the bugs—our focus is end-to-end, from specification
to implementation, and on identifying where ambiguity in
specifications leads to bugs.

3.3 Semantic parsing and code generation

Some previous efforts proposed to use deep-learning based
approaches in semantic parsing [10, 17, 29] and in certain
types of automatic code generation [19, 24, 28]. Although
such methods have proven effective, they cannot be directly
applied to our task. First, deep learning typically trains in
a black-box manner. Since we aim to identify ambiguity
in specifications, we aim to interpret intermediate steps in
the parsing process and maintain all valid parsings. Second,
such methods require large-scale annotated datasets. It is
impractical to collect sufficient high-quality data that maps
network protocol specifications to expert-annotated logical
forms (for supervised learning).

4 sage

A tool for ambiguity identification should be able to ana-
lyze a sentence and present how it can be interpreted with
more than one semantic meaning. As for implementing a
compiler that compiles a natural language specification into



ANRW ’21, July 24–30, 2021, Virtual Event, USA Jane Yen, Ramesh Govindan, and Barath Raghavan

code, this compiler is required to handle multiple elements
in the specifications, where each element can have different
assumptions to be converted into executable code.
Our recent work, sage [27], is a significant first step to-

wards implementing the two potentially useful tools we de-
scribed earlier. First, sage enables per-sentence ambiguity
analysis by leveraging the CCG approach to extract semantic
meanings of sentences, and by leveraging domain-specific
knowledge rules to disambiguate nonsense results of seman-
tic extraction. Second, sage shows its ability to handle a
number of common elements across multiple RFCs.

4.1 Semantic parsing

Semantic parsing is the task of extracting meanings from nat-
ural language utterances. While much prior work developed
semantic parsing tools and methods, most select only one
meaning as a result. However, to satisfy our needs in identi-
fying ambiguities, we want to store any valid parsing results
and justify whether a result shall be kept or not. For this
reason, we use the Combinatory Categorial Grammar (CCG)
formalism, which enables coupling syntax and semantics in
the parsing process and retains the flexibility to customize
hand-crafted lexicons for domain-specific terminologies (for
example, in the context of a networking protocol, terms like
one’s complement or checksum).
CCG introduction. The CCG formalism relies on combi-
natory logic to combine entities in a sentence. Each en-
tity is specified with syntax to explain how it can combine
with neighboring entities and its semantics with lambda
expressions. CCG parsing generates logical forms that cap-
ture the semantics of the phrases. For example, we added
syntax and semantics for each word in a sentence “check-
sum is zero”. CCG parsing outputs us a logical form {S:
@Is("checksum",@Num(0))}, which shows a checksum vari-
able exists with an assignment relationship to a value of
zero.
Running CCG parsing. We run CCG parsing on each sen-
tence of an RFC. Ideally, an unambiguous sentence results
in exactly one logical form. In practice, a CCG parser may
output zero or more logical forms, some of which are due
to limitations in the parser itself and some from ambiguities
inherent in a sentence.

4.2 Disambiguation

Using the CCG parsing results (i.e. how many logical forms
are generated) directly as the criteria to define ambiguity
might not provide RFC drafters a clear suggestion of how to
remove that ambiguity. Some parsing results actually repre-
sent exactly one semantic meaning after recovering some
information and/or fixing CCG’s own limitations. Filtering

Name Description

♦ Packet Format Packet anatomy (i.e., field structure)
♦ Field Descriptions Packet header field descriptions
♦ Constraints Constraints on field values
♦ Protocol Behaviors Reactions to external/internal events
System Architecture Protocol implementation components
+ State Management Session information and/or status
Comm. Patterns Message sequences (e.g., handshakes)

Table 2: Protocol specification components. sage sup-

ports those marked with ♦ (fully) and + (partially) [27].

those results could leave the RFC drafters with true ambigui-
ties they should edit.
Cases of zero logical form. Zero logical form cases are
incomplete sentences (due to missing subjects or incorrect
grammar). For missing subjects, we often can recover this
information from analyzing structural information (for exam-
ple, content hierarchy or descriptive lists). Ideally, we expect
that drafters would strive to use complete sentences, but
in practice some sentences have missing subjects. As long
as the missing subject information can be recovered with
other structural information from an RFC, we do not con-
sider missing subjects as a kind of ambiguity. On the other
hand, if no additional information can assist us to recover the
information, such sentences are considered to have incorrect
grammar which cannot be processed by CCG successfully
and is considered as a true ambiguity. In such cases, sage
triggers an alarm that the sentence needs to be revised to
resolve ambiguity.
Cases of more than 1 logical form. Cases with more than
1 logical form can be due to limitations in CCG parsing it-
self or true ambiguities inherent in a sentence. Our aim is
to find out only true ambiguity that could lead to different
semantic meanings. Therefore, those cases that are due to
CCG parsing limitations shall be filtered (for example, enti-
ties are combined in a logical form whose semantic meaning
makes no sense; entities can switch their orders in a logical
form without messing up the semantic meanings; logical
forms with the same semantic meanings can be expressed
in a verbose or a concise form). sage applies sets of rules to
disambiguate those logical forms.

4.3 Code generation

RFCs are used to describe networking behaviors from diverse
perspectives. Protocol RFCs are a kind of RFC that come with
the intent to program the protocol design as executable code.
A protocol RFC contains multiple elements (Table 2), where
each component contributes to part of the whole protocol
code. From Table 2, wemarked the components that sage can
process from sentence description together with structural
and/or syntactical information to executable C++ code.



Tools for Disambiguating RFCs ANRW ’21, July 24–30, 2021, Virtual Event, USA

sage’s code generator takes a logical form as an input,
and uses a post-order traversal of the logical form obtained
after disambiguation to convert the relations of entities into
C++ code. For example, “@Is("checksum",@Num(0))“ has
an assignment relation between variable "checksum" and
number 0, and sage outputs a line of executable code “hdr-
>checksum = 0“.
Generality.We evaluated sage’s functioning across multi-
ple protocols for the specified components (Table 2), includ-
ing ICMP and partial support for IGMP, NTP, and BFD. We
verified that sage-generated code can interoperate with stan-
dard implementations of tcpdump, ping, and traceroute. In
addition, sage shows the ability to parse complicated com-
ponents e.g., state management.

5 Challenges

While sage is a significant first step to improve the RFC
publication process, there remain many challenges to be ad-
dressed. Thus far, sage can parse one sentence at a time and
establish rules to identify ambiguities. sage can also compile
an unambiguous sentence into a line of code, and sequen-
tially execute a block of code when the descriptions contain
clear instructions of execution order. Below, we discuss what
challenges could be considered for future directions that
build upon sage.
Paragraph analysis instead of per-sentence analysis.

sage mostly parses sentence by sentence to determine a sen-
tence’s ambiguity and generates code according to the order
of descriptions. Therefore, sage has some parsing limitations
in some cases. For example, a sentence might use a pronoun
and there could be multiple candidates that the pronoun
refers to. The candidates could be discovered from multiple
neighboring sentences that are within the same paragraph.
If more than one candidate exists, this can be considered as
a kind of ambiguity that can confuse RFC readers.
When a compiler compiles a paragraph of text, it is pos-

sible that the order of descriptions do not follow sequential
execution order. For example, a protocol RFC can describe
handshakes that resemble a state machine, with all the in-
volved connection states and their transitions are described
in a large paragraph. The compiler should no longer assume
the generated code should follow the description order to
convert sentence by sentence. Instead, the compiler should
be aware that all connection states are of equal importance
to be executed, and the generated code should be able to
switch to any state for execution given the current state.
In other words, the compiler has to learn the context of a
whole paragraph, determine a correct code block template,

and decide whether a variable value will be reused for the
next event.
Semantic Meaning and Classifications sage has evalu-
ated a number of protocol RFCs with successful code gen-
eration. However, the type of generated code remains lim-
ited. sage can parse descriptions that assign, associate, and
rewrite values and simple if-else statements. While these
sets of operations have covered a large portion of system
code, there are other types of code that should be considered
such as code for asserting values, code for adding constraints,
code for logging events, etc.

Although we can use sage to disambiguate sentences and
generate exactly one logical form, the conversion from logi-
cal form to code should not be limited to exactly one kind of
code. We have to identify when/whether a description can
be interpreted as more than one type of code, and determine
what the execution order is when different types of code
coexist. In other words, classification of semantic meanings
also takes an important role in code generation.
Mis-matched/ Mis-captured behaviors. Among RFC
components, many components (such as packet formulation
or state machine context) are presented with both text and
syntactical components, where syntactical components
can be diagrams, listings, tables or figures. In some cases,
textual sentences/paragraphs are used to explain what
the syntactical components represent, or extend what
syntactical components have covered. Thus, text and
syntactical components are complementary to each other.
In other cases, due to mistakes or some other reason, texts
and syntactical components can be inconsistent. This
situation causes confusion for the RFC reader whether to
believe in textual descriptions or the meaning of syntactical
components.

When it comes to code generation for any case, the process
of code generation has to (1) correctly associate the same
semantic meanings parsed from textual descriptions and
syntactical components, (2) identify any missing semantic
meanings from either representations, and (3) identify dis-
crepancies between texts and syntactical components. The
generated code should not repeat the same semantic mean-
ing output, or miss any mentioned semantic meanings. The
code generator should also report/alarm discrepancies to
RFC drafters to reduce confusion.
Alternative code representations. The aim of the com-
piler (§2.3) is to accept natural language specifications and
turn them into any structured representation, which can
include pseudocode, formal specification language text, and
implementations in a variety of programming languages.
Thus far, sage has illustrated the possibility to turn natural
language texts into working C++ code. While every kind of



ANRW ’21, July 24–30, 2021, Virtual Event, USA Jane Yen, Ramesh Govindan, and Barath Raghavan

representations has its advantages, the conversion among
different representations could face different challenges. For
example, RFC drafters commonly put pseudocode snippets
in their drafts to better explain their ideas to their readers,
but pseudocode is not executable and maintains some level
of flexibility in the expressions given. If pseudocode is gen-
erated by the compiler and a drafter would like to compare
its logical behavior with a manually written pseudocode im-
plementation, what the criteria is to determine whether the
functionalities are equivalent. For another example, some
specifications expressed in the protocol’s design in TLA+; the
TLA+ language itself has different expressions than logical
form and C++, and future work is required to identify the
limitation of compiling natural language to TLA+.
StandaloneRFC ormultiple RFCs. Ideally, every perspec-
tive of a protocol can be completely expressed in a single RFC.
In practice, a protocol can be explained over multiple RFCs
for the ease of reading by topic. For example, one RFC may
describe the functionality of the protocol and explain the
design of packets, and a separate complementary RFC may
explain what each value represents for the fields presenting
in the protocol and what additional constraints would be
under a different scenario.
When multiple RFCs are given, we need to discover how

to merge the content by concept without missing or violat-
ing any constraints that may exist. From the perspective of
an RFC drafter, the drafter must confirm the consistency
not only within a standalone RFC but also across all rele-
vant RFCs. Any discrepancy among RFCs could similarly
lead to interoperability issues. An ideal compiler should thus
take inconsistency into consideration and automatically com-
pare/label/alarm where the discrepancies happen.
Single protocol or stack of protocols. While RFC spec-
ifications are usually limited to the discussion of a single
protocol, this single protocol has to interact/stack cleanly
with other protocols when it’s applied in a networked sys-
tem. For example, the ICMP RFC describes its design, but it
has to be built on top of IP. In such cases, a compiler that
is considering both protocols together first has to identify
the dependency between the two protocols and/or the con-
straints to be considered. When the compiler is stacking the
two protocols together, it should be aware of, for example,
the general IP header description selecting the exact value
for ICMP as its next protocol field, and that the total length
field in the IP header needs to add the ICMP header and the
payload.
Logic vs. performance. A protocol RFC usually focuses on
describing its logical functionality and leaves the flexibil-
ity of implementing code to any reader of the RFC (unless
the RFC provides a reference implementation and expects

the future protocol implementer to directly apply the ref-
erence implementation in all contexts). In other words, we
could reasonably expect the generated code from the com-
piler is valued for its correct logic instead of its performance.
If a drafter suggests a performance-oriented implementa-
tion, some mechanism could be supported to identify which
natural-language statements convey performance consider-
ations and which convey logical considerations. Moreover,
the compiler can optionally output different versions of gen-
erated code according to the needs of the user.

6 Discussion

We have mentioned a number of problems yet to be solved.
Here we discuss some existing techniques that might assist
us to resolve them with proper modification to sage.
For example, to handle multiple candidate problems, we

might employ tools to identify what terms/tokens are used
to refer the same concept, which is commonly recognized
as a “coreference resolution“ problem. Although the coref-
erence resolution problem has been studied for years and
the performance of tools for this task is generally consid-
ered good, we find generic coreference resolution tools are
still insufficient to handle many domain-specific terms. In
particular, such tools do not perform well when multiple
terms seemingly are the same but are actually different be-
cause of naming styles e.g., ADMINDOWN, admin_down,
AdminDown. The generic coreference resolution tools pro-
vide inflexible APIs, which disable customization rules that
could group terms together. If we would like to resolve such
problems, we could pre-process text, or post-process results
to address the limitations of existing tools.

As another example, to handle multiple RFCs that combine
to form a single protocol, one method is to leverage proper
markdown or reference links to identify the relationships be-
tween RFCs. Given proper structural information (e.g., titles)
and categorized labels, the same specification documents can
be analyzed together and used to discover whether there are
any discrepancies.

We do not mean to claim that all the mentioned challenges
can be easily solved; these examples still need to undergo
comprehensive discussion and evaluation to prove their effec-
tiveness. Our focus in this paper is to provide some perspec-
tives from our experience and identify a number of research
directions that can be explored that may be of benefit to the
networking standards development community.

References

[1] Abbott, M. B., and Peterson, L. L. A language-based approach to
protocol implementation. IEEE/ACM transactions on networking (1993).

[2] Anderson, D. P. Automated protocol implementation with rtag. IEEE
Transactions on Software Engineering 14, 3 (1988), 291–300.

[3] Artzi, Y., FitzGerald, N., and Zettlemoyer, L. S. Semantic parsing
with combinatory categorial grammars. ACL (Tutorial Abstracts) 3



Tools for Disambiguating RFCs ANRW ’21, July 24–30, 2021, Virtual Event, USA

(2013).
[4] Bhargavan, K., Obradovic, D., andGunter, C. A. Formal verification

of standards for distance vector routing protocols. Journal of the ACM
(JACM) 49, 4 (2002), 538–576.

[5] Bishop, S., Fairbairn, M., Norrish, M., Sewell, P., Smith, M., and
Wansbrough, K. Rigorous specification and conformance testing tech-
niques for network protocols, as applied to tcp, udp, and sockets. In
Proceedings of the 2005 conference on Applications, technologies, architec-
tures, and protocols for computer communications (2005), pp. 265–276.

[6] Bolognesi, T., and Brinksma, E. Introduction to the iso specification
language lotos. Computer Networks and ISDN systems 14, 1 (1987).

[7] Boussinot, F., and De Simone, R. The esterel language. Proceedings
of the IEEE 79, 9 (1991), 1293–1304.

[8] Budkowski, S., and Dembinski, P. An introduction to estelle: a spec-
ification language for distributed systems. Computer Networks and
ISDN systems 14, 1 (1987), 3–23.

[9] Daigle, L., and Internet Architecture Board. Process for Publi-
cation of IAB RFCs. RFC 4845, 2007.

[10] Dong, L., and Lapata, M. Coarse-to-fine decoding for neural semantic
parsing. arXiv preprint arXiv:1805.04793 (2018).

[11] Editor, R. Number of rfcs published per year. https://www.rfc-
editor.org/rfcs-per-year/.

[12] Falk, A. Definition of an Internet Research Task Force (IRTF) Docu-
ment Stream. RFC 5743, 2009.

[13] Hutchinson, N. C., and Peterson, L. L. The x-kernel: An architecture
for implementing network protocols. IEEE Transactions on Software
engineering, 1 (1991), 64–76.

[14] Killian, C., Anderson, J. W., Jhala, R., and Vahdat, A. Life, death,
and the critical transition: Finding liveness bugs in systems code. In 4th
USENIX Symposium on Networked Systems Design & Implementation
(NSDI 07) (2007), NSDI, USENIX Association.

[15] Killian, C. E., Anderson, J. W., Braud, R., Jhala, R., and Vahdat,
A. M. Mace: language support for building distributed systems. ACM
SIGPLAN Notices 42, 6 (2007), 179–188.

[16] Kohler, E., Kaashoek, M. F., and Montgomery, D. R. A readable
tcp in the prolac protocol language. In Proceedings of the conference
on Applications, technologies, architectures, and protocols for computer
communication (1999), pp. 3–13.

[17] Krishnamurthy, J., Dasigi, P., and Gardner, M. Neural semantic
parsing with type constraints for semi-structured tables. In Proceed-
ings of the 2017 Conference on Empirical Methods in Natural Language
Processing (2017), pp. 1516–1526.

[18] Lee, H., Seibert, J., Killian, C. E., and Nita-Rotaru, C. Gatling:
Automatic attack discovery in large-scale distributed systems. In NDSS
(2012), Citeseer.

[19] Lin, X. V., Wang, C., Pang, D., Vu, K., and Ernst, M. D. Program
synthesis from natural language using recurrent neural networks. Uni-
versity of Washington Department of Computer Science and Engineering,
Seattle, WA, USA, Tech. Rep. UW-CSE-17-03-01 (2017).

[20] McMillan, K. L., and Zuck, L. D. Formal specification and testing of
QUIC. In Proceedings of ACM SIGCOMM (2019).

[21] McQuistin, S., Band, V., Jacob, D., and Perkins, C. Parsing protocol
standards to parse standard protocols. In Proceedings of the Applied
Networking Research Workshop (New York, NY, USA, 2020), ANRW ’20,
Association for Computing Machinery, p. 25–31.

[22] Pedrosa, L., Fogel, A., Kothari, N., Govindan, R., Mahajan, R., and
Millstein, T. Analyzing protocol implementations for interoperabil-
ity. In 12th {USENIX} Symposium on Networked Systems Design and
Implementation ({NSDI} 15) (2015), pp. 485–498.

[23] Postel, J. Internet Control Message Protocol. RFC 792, 1981.
[24] Rabinovich, M., Stern, M., and Klein, D. Abstract syntax net-

works for code generation and semantic parsing. arXiv preprint

arXiv:1704.07535 (2017).
[25] Sidhu, D., and Chung, A. A formal description technique for protocol

engineering. University of Maryland at College Park, 1990.
[26] von Bochmann, G. Methods and tools for the design and validation of

protocol specifications and implementations. Université de Montréal,
Département d’informatique et de recherche . . . , 1987.

[27] Yen, J., Lévai, T., Ye, Q., Ren, X., Govindan, R., and Raghavan, B.
Semi-automated protocol disambiguation and code generation. In
Proceedings of ACM SIGCOMM (2021).

[28] Yin, P., and Neubig, G. A syntactic neural model for general-purpose
code generation. arXiv preprint arXiv:1704.01696 (2017).

[29] Yin, P., Zhou, C., He, J., and Neubig, G. Structvae: Tree-structured
latent variable models for semi-supervised semantic parsing. arXiv
preprint arXiv:1806.07832 (2018).

https://www.rfc-editor.org/rfcs-per-year/
https://www.rfc-editor.org/rfcs-per-year/

	Abstract
	1 Introduction
	2 Overview
	2.1 RFC drafting and reviewing process
	2.2 Human effort in specification review
	2.3 Tools in the publication process

	3 Related Work
	3.1 Formal specification languages
	3.2 Protocol analysis
	3.3 Semantic parsing and code generation

	4 sage
	4.1 Semantic parsing
	4.2 Disambiguation
	4.3 Code generation

	5 Challenges
	6 Discussion
	References

