
Semi-Automated Protocol Disambiguation and Code Generation
Jane Yen

University of Southern California
yeny@usc.edu

Tamás Lévai
Budapest University of Technology

and Economics
levait@tmit.bme.hu

Qinyuan Ye
University of Southern California

qinyuany@usc.edu

Xiang Ren
University of Southern California

xiangren@usc.edu

Ramesh Govindan
University of Southern California

ramesh@usc.edu

Barath Raghavan
University of Southern California

barathra@usc.edu

ABSTRACT

For decades, Internet protocols have been specified using natural
language. Given the ambiguity inherent in such text, it is not sur-
prising that protocol implementations have long exhibited bugs.
In this paper, we apply natural language processing (NLP) to ef-
fect semi-automated generation of protocol implementations from
specification text. Our system, sage, can uncover ambiguous or
under-specified sentences in specifications; once these are clari-
fied by the author of the protocol specification, sage can generate
protocol code automatically.

Using sage, we discover 5 instances of ambiguity and 6 instances
of under-specification in the ICMP RFC; after fixing these, sage
is able to automatically generate code that interoperates perfectly
with Linux implementations. We show that sage generalizes to
sections of BFD, IGMP, and NTP and identify additional conceptual
components that sage needs to support to generalize to complete,
complex protocols like BGP and TCP.

CCS CONCEPTS

• Networks → Formal specifications;

KEYWORDS

natural language, protocol specifications

ACM Reference Format:

Jane Yen, Tamás Lévai, Qinyuan Ye, Xiang Ren, Ramesh Govindan,
and Barath Raghavan. 2021. Semi-Automated Protocol Disambiguation
and Code Generation. In ACM SIGCOMM 2021 Conference (SIGCOMM ’21),
August 23–28, 2021, Virtual Event, USA. ACM, New York, NY, USA, 15 pages.
https://doi.org/10.1145/3452296.3472910

1 INTRODUCTION

Four decades of Internet protocols have been specified in English
and used to create, in Clark’s words, rough consensus and running
code [16]. In that time we have come to depend far more on network
protocols than most imagined. To this day, engineers implement
a protocol by reading and interpreting specifications as described
in Request For Comments documents (RFCs). Their challenge is

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
SIGCOMM ’21, August 23–28, 2021, Virtual Event, USA
© 2021 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-8383-7/21/08.
https://doi.org/10.1145/3452296.3472910

to navigate easy-to-misinterpret colloquial language while writing
not only a bug-free implementation but also one that interoperates
with code written by another person at a different time and place.

Software engineers find it difficult to interpret specifications in
large part because natural language can be ambiguous. Unfortu-
nately, such ambiguity is not rare; the errata alone for RFCs over
the years highlight numerous ambiguities and the problems they
have caused [17, 33, 68, 78]. Ambiguity has resulted in buggy imple-
mentations, security vulnerabilities, and has necessitated expensive
and time-consuming software engineering processes, like interop-
erability bake-offs [32, 71].

To address this, one line of research has sought formal specifica-
tion of programs and protocols (§8), which would enable verifying
specification correctness and, potentially, enable automated code
generation [13]. However, formal specifications are cumbersome
and thus have not been adopted in practice; to date, protocols are
specified in natural language.1

In this paper, we apply NLP to semi-automated generation of
protocol implementations from RFCs. Our main challenge is to
understand the semantics of a specification. This task, semantic
parsing, has advanced in recent years with parsing tools such as
CCG [5]. Such tools describe natural language with a lexicon and
yield a semantic interpretation for each sentence. Because they
are trained on generic prose, they cannot be expected to work out
of the box for idiomatic network protocol specifications, which
contain embedded syntactic cues (e.g., structured descriptions of
fields), incomplete sentences, and implicit context from neighboring
text or other protocols. More importantly, the richness of natural
language will likely always lead to ambiguity, so we do not expect
fully-automated NLP-based systems (§2).

Contributions. In this paper, we describe sage, a semi-automated
approach to protocol analysis and code generation from natural-
language specifications. sage reads the natural-language protocol
specification (e.g., an RFC or Internet Draft) and marks sentences
(a) for which it cannot generate unique semantic interpretations
or (b) which fail on the protocol’s unit tests (sage uses test-driven
development). The former sentences are likely semantically am-
biguous whereas the latter represent under-specified behaviors. In
either case, the user (e.g., the author of the specification) can then
revise the sentences and re-run sage until the resulting RFC can
cleanly be turned into code. sage can be used at various stages

1In recent years, attempts have been made to formalize other aspects of network
operation, such as network configuration [7, 37] and control plane behavior [55], with
varying degrees of success.

https://doi.org/10.1145/3452296.3472910
https://doi.org/10.1145/3452296.3472910

SIGCOMM ’21, August 23–28, 2021, Virtual Event, USA J.Yen.et al.

Name Description

♦ Packet Format Packet anatomy (i.e., field structure)
♦ Field Descriptions Packet header field descriptions
♦ Constraints Constraints on field values
♦ Protocol Behaviors Reactions to external/internal events
System Architecture Protocol implementation components
+ State Management Session information and/or status
Comm. Patterns Message sequences (e.g., handshakes)

Table 1: Protocol specification components. sage supports those

marked with ♦ (fully) and + (partially).

in the standardization process (§2.3): while drafting, generating
reference implementations, or revising a specification.

At the core of sage is an intermediate representation, called
a logical form, of the semantics of a natural-language sentence.
Intuitively, a logical form is a predicate expressing relationships
between entities in the sentence. sage uses a logical form as a
unifying abstraction underlying several tasks: (a) determining when
a sentence may be fundamentally ambiguous, (b) identifying when
to seek human input to expand its own vocabulary in order to parse
the sentence, and (c) generating code.

sage is architected as a pipeline with three extensible stages,
each of which makes unique contributions.
▶ The parsing stage (§3) generates logical forms for each input
sentence. To do this, sage extends a pre-existing semantic parser
([75]) with domain-specific constructs necessary to correctly parse
IETF standards. These constructs include networking-specific vo-
cabulary and domain-specific semantics (e.g., the use of the word
“is” to specify assignment). sage includes tools that we developed
to parse structural context (e.g., indentation to specify field descrip-
tions) and non-textual elements (e.g., ASCII art for packet header
representations).
▶ Ideally, the parser should be able to reduce each sentence to a
single logical form. In practice, RFCs contain idiomatic usage that
confounds natural language parsers, such as incomplete sentences
to describe protocol header fields and specific uses of verbs like is
and prepositions like of. For these sentences, the parser may emit
multiple logical forms. sage’s disambiguation stage contains mul-
tiple checks that filter out logical forms that incorrectly interpret
this idiomatic usage. We have developed these filters in the course
of using sage to parse RFCs. Even so, at the end of this stage, a
sentence may not result in a single logical form either (a) because
the parser’s vocabulary or the disambiguation stage’s filters are
incomplete, or (b) the sentence may be fundamentally ambiguous.
sage prompts the user to extend the vocabulary or add a filter (for
(a)) or rewrite the sentence (for (b)). As users repeatedly extend
(“train”) sage’s vocabulary and filters by parsing RFCs, we expect
the level of human involvement to drop significantly (§2.3).
▶ Once each sentence has been reduced to a single logical form,
sage’s code generator converts semantic representations to exe-
cutable code (§5). To do this, the code generator uses contextual
information that it has gleaned from the RFC’s document structure,
as well as static context predefined in sage about lower-layer pro-
tocols and the underlying OS. Unit testing on generated code can
uncover incompleteness in specifications.

sage discovered (§6) 5 sentences in the ICMP RFC [63] (of which
3 are unique, the others being variants) that had multiple seman-
tic interpretations even after disambiguation. It also discovered 6
sentences that failed unit tests (all variants of a single sentence).
After we rewrote these sentences, sage was able to automatically
generate code for ICMP that interoperated perfectly with ping

and traceroute. In contrast, graduate students asked to implement
ICMP in a networking course made numerous errors (§2). More-
over, sage was able to parse sections of BFD [35], IGMP [19], and
NTP [54] (but does not yet fully support these protocols), with
few additions to the lexicon. It generated packets for the timeout
procedure containing both NTP and UDP headers. It also parsed
state management text for BFD to determine system actions and up-
date state variables for reception of control packets. Finally, sage’s
disambiguation is often very effective, reducing, in some cases,
56 logical forms (an intermediate representation) to 1. We have
open-sourced our sage implementation [69].

Toward greater generality. sage is a significant first step toward
automated processing of natural-language protocol specifications,
but much work remains. Protocol specifications contain many com-
ponents; Table 1 indicates which ones sage supports well (in green),
which it supports partially (in olive), and which it does not sup-
port. Some protocols contain complex state machine descriptions
(e.g., TCP) or describe how to process and update state (e.g., BGP);
sage can parse state management in a simpler protocol like BFD.
Other protocols describe software architectures (e.g., OSPF, RTP)
and communication patterns (e.g., BGP); sage must be extended to
parse these descriptions. In §7, we break down the prevalence of
protocol components by RFC to contextualize our contributions,
and identify future sage extensions. Such extensions will put sage
within reach of parsing large parts of TCP and BGP RFCs.

Broader implications. We note three broader takeaways from
our work on sage. First, we wish to highlight the consequences
of ambiguity in specifications and how they can manifest in code.
Second, with a proper analysis and disambiguation tool (i.e. CCG
lexicons and disambiguation checks), SAGE can highlight ambi-
guities for RFC authors, editors, protocol developers, etc. Third,
SAGE shows the feasibility of generating specification code from
natural language descriptions, and we hope SAGE can inspire fu-
ture work to overcome the code generation challenges of diverse
natural-language contexts.

2 BACKGROUND AND OVERVIEW

Specification ambiguities can lead to bugs and non-interoperability,
which we quantify using implementations of ICMP [63] by students
in a graduate networking course.

2.1 Discussion of ICMP Implementations

ICMP, defined in RFC 792 in 1981 and used by core tools like ping
and traceroute, is a simple protocol whose specification should
be easy to interpret. To test this assertion, we examined imple-
mentations of ICMP by 39 students in a graduate networking class.
Given the ICMP RFC and related RFCs, students built ICMPmessage
handling for a router.2

2Ethics note: the code artifacts we examined were pre-existing, with no personal or
identifying information; the code was not generated for this analysis.

Semi-Automated Protocol Disambiguation and Code Generation SIGCOMM ’21, August 23–28, 2021, Virtual Event, USA

Error Type Freqency

IP header related 57%
ICMP header related 57%
Network byte order and host byte order conversion 29%
Incorrect ICMP payload content 43%
Incorrect echo reply packet length 29%
Incorrect checksum or dropped by kernel 36%

Table 2: Error types of failed cases and their frequency in 14

faulty student ICMP implementations.

Index ICMP checksum range interpretations

1 Size of a specific type of ICMP header.
2 Size of a partial ICMP header.
3 Size of the ICMP header and payload.
4 Size of the IP header.
5 Size of the ICMP header and payload, and any IP options.
6 Incremental update of the checksum field using whichever checksum

range the sender packet chose.
7 Magic constants (e.g., 2 or 8 or 36).

Table 3: Students’ ICMP checksum range interpretations.

To test whether students implemented echo reply correctly, we
used the Linux ping tool to send an echo message to their router
(we tested their code using Mininet [44]). Across the 39 implemen-
tations, the Linux implementation correctly parsed the echo reply
only for 24 of them (61.5%). One failed to compile and the remaining
14 exhibited 6 categories (not mutually exclusive) of implementa-
tion errors (Table 2): mistakes in IP or ICMP header operations;
byte order conversion errors; incorrectly-generated ICMP payload
in the echo reply message; incorrect length for the payload; and
wrongly-computed ICMP checksum. Each error category occurred
in at least 4 of the 14 erroneous implementations.

To understand the incorrect checksum better, consider the speci-
fication of the ICMP checksum in this sentence: The checksum is
the 16-bit one’s complement of the one’s complement sum of the ICMP
message starting with the ICMP Type. This sentence does not specify
where the checksum should end, resulting in a potential ambigu-
ity for the echo reply; a developer could checksum some or all of
the header, or both the header and the payload. In fact, students
came up with seven different interpretations (Table 3) including
checksumming only the IP header, checksumming the ICMP header
together with a few fixed extra bytes, and so on.

2.2 Approach

Dealing with Ambiguity. Students in an early graduate course
might be expected to make mistakes in implementing protocols
from specifications, but we were surprised at the prevalence of
errors (Table 2) and the range of interpretations of parts of the
specification (Table 3) in student code. We do not mean to suggest
that seasoned protocol developers would make similar mistakes.
However, this exercise highlights why RFC authors and the IETF
community have long relied on manual methods to avoid or elimi-
nate non-interoperabilities: careful review of standards drafts by
participants, development of reference implementations, and inter-
operability bake-offs [32, 71] at which vendors and developers test
their implementations against each other to discover issues that
often arise from incomplete or ambiguous specifications.

Why are there ambiguities in RFCs? RFCs are ambiguous be-
cause (a) natural language is expressive and admits multiple ways

to express a single idea; (b) standards authors are technical domain
experts who may not always recognize the nuances of natural lan-
guage; and (c) context matters in textual descriptions, and RFCs
may omit context.

Can reference implementations alone eliminate ambiguity?

Reference implementations are useful but insufficient. For a refer-
ence protocol document to become a standard, a reference imple-
mentation is indeed often written, and this has been the case for
many years. A reference implementation is often written by partic-
ipants in the standardization process, who may or may not realize
that there exist subtle ambiguities in the text. Meanwhile, vendors
write code directly to the specification (often to ensure that the
resulting code has no intellectual property encumbrances), some-
times many years after the specification was standardized. This
results in subtle incompatibilities in implementations of widely
deployed protocols [59].

Approach: Semi-automated Semantic Parsing of RFCs. Un-
like general English text, network protocol specifications have ex-
ploitable structure. The networking community uses a restricted
set of words and operations (i.e., domain-specific terminology) to
describe network behaviors. Moreover, RFCs conform to a uniform
style [22] (especially recent RFCs) and all standards-track RFCs are
carefully edited for clarity and style adherence [67].

Motivated by this observation, we leverage recent advances in
the NLP area of semantic parsing. Natural language can have lexi-
cal [36, 66] (e.g., the word bat can have many meanings), structural
(e.g., the sentence Alice saw Bob with binoculars) and semantic (e.g.,
in the sentence I saw her duck) ambiguity. Semantic parsing tools
can help identify these ambiguities. However, for the foreseeable
future we do not expect NLP to be able to parse RFCs without some
human input. Thus, sage is semi-automated and uses NLP tools,
along with unit tests, to help a human-in-the-loop discover and
correct ambiguities after which the specification is amenable to
automated code generation.

2.3 sage Overview

Figure 1 shows the three stages of sage. The parsing stage uses a
semantic parser [5] to generate intermediate representations, called
logical forms (LFs), of sentences. Because parsing is not perfect, it
can output multiple LFs for a sentence. Each LF corresponds to one
semantic interpretation of the sentence, so multiple LFs represent
ambiguity. The disambiguation stage aims to automatically elimi-
nate such ambiguities. If, after this, ambiguities remain, sage asks
a human to resolve them. The code generator compiles LFs into
executable code, a process that may also uncover ambiguity.

sage Workflow. To clarify how sage works, and when (and for
what reason) human involvement is necessary, we briefly describe
the workflow that a sage user (e.g., a specification author) would
follow (Figure 2). First, the user extracts actionable sections of a
specification and feeds these to the semantic parsing stage. RFCs
contain significant explanatory, non-actionable, material (e.g., the
introduction) that may not be relevant to the analysis; sage cur-
rently requires a human to identify these, but can potentially iden-
tify such sections automatically, which we have left to future work.
The parsing stage analyzes each sentence in the input. The out-
put of this stage is a set of logical forms representing semantic

SIGCOMM ’21, August 23–28, 2021, Virtual Event, USA J.Yen.et al.

Semantic Parsing

Paragraph Extraction

0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+
| Type | Code | Checksum |
+-+
| unused |
+-+
| Internet Header + 64 bits of Original Data Datagram |
+-+

Header Struct Extraction

Field Description Relations
• Assign

• Associate
• Various

Disambiguation

LF to Graph Conversion

Internal Inconsistency Checks

1. Type

2. Argument Ordering

3. Predicate Ordering

4. Distributivity

Associativity Check

Final LF Selection

Code Generator

Filter Non-executable LFs

LF to Code Conversion

Code Snippet Reordering

Code Stitching

Dynamic
Code & Static

Framework

Final Executable Code

Figure 1: SAGE components.

Disambiguation ImplementationRFC CODE

Semantic
Parsing Disambiguation 1 LF/sentence Code Gen. Unit Tests

user

✓

✗

✓

✗

resolve ambiguity and
implicit protocol behavior

Figure 2: sage workflow in processing RFC 792.

interpretations of the sentence (§3). The disambiguation stage (§4)
winnows these logical forms based on built-in checks that capture
domain-specific usage in protocol specifications.

If this step does not result in a single LF, there are two possibili-
ties: (a) either the sentence is fundamentally ambiguous, or (b) the
sentence contains terms not present in sage’s lexicon or domain
specific usage not present in sage’s built-in checks. At this point,
sage presents the sentence to the user, who can, for case (a), rewrite
the sentence to resolve the ambiguity, or, for case (b), extend sage’s
lexicon or add to its built-in checks. This is akin to systems like
spell and grammar checkers, which present users with potential
errors, and permit users to add entries to local dictionaries as part
of a correction step. Adding new lexical entries is, of course, more
difficult than adding entries to a dictionary. Our sage implemen-
tation contains a simple user interface enhancement to suggest
additions in order to reduce the cognitive load on the user. Better
user interfaces can further reduce cognitive load, but will require
significant user studies so we leave these to future work.

Over time, as sage is used to analyze RFCs, we expect this manual
effort to decline significantly. Our intuition for this comes from
Zipf’s law, first defined in quantitative linguistics, which shows that
the frequency of word usage is heavy-tailed: some are very common
while others are rare. Over time, the lexical entries and checks added
to sage may cover most of the text in a new specification, and users
need only add the occasional lexical entry or domain-specific check.
Our evaluations (§6) corroborate this intuition.

Once each sentence has been reduced to a single LF, the code
generator stage (§5) generates protocol code and runs unit tests on
them. These unit tests are to be written by the spec author; sage
employs test-driven development (§6.5). If a unit test fails, it is likely
that protocol behavior is under-specified. At this point as well sage
notifies the user (e.g., the specification author), who can rewrite the
relevant sentence(s) and re-invoke the entire pipeline.

How andwhen to use sage. A standards document begins its life
as an Internet Draft discussed at several IETFmeetings. At this stage,

specification authors can use sage to identify fundamentally am-
biguous sentences. Before the protocol is standardized, participants
in the standardization process develop a reference implementation.
During this stage, developers of the reference implementation can
test sage’s auto-generated code against their implementation to
identify under-specified behavior (§6.5). Finally, when a vendor
decides to implement the protocol on their platform, they can use
sage’s generated code as a starting point for their implementation.

sage can also help to revise specifications in two ways. Its dis-
ambiguation stage can eliminate ambiguity introduced during the
revision. Moreover, it can generate code for two different versions
of a specification, and with the help of analysis tools (e.g., static
analysis, control flow analysis), a future version of sage could help
protocol implementers to develop backward compatibility mecha-
nisms between the two versions.

3 SEMANTIC PARSING

Semantic parsing is the task of extracting meaning from a doc-
ument. Tools for semantic parsing formally specify natural lan-
guage grammars and extract parse trees from text. More recently,
deep-learning based approaches have proved effective in semantic
parsing [21, 41, 88] and certain types of automatic code genera-
tion [47, 64, 86]. However, such methods do not directly apply to
our task. First, deep learning typically requires training in a “black-
box”. Since we aim to identify ambiguity in specifications, we aim to
interpret intermediate steps in the parsing process and maintain all
valid parsings. Second, such methods require large-scale annotated
datasets; collecting high-quality data that maps network protocol
specifications to expert-annotated logical forms (for supervised
learning) is impractical.

For these reasons, we use the Combinatory Categorial Gram-
mar (CCG [5]) formalism that enables (a) coupling syntax and
semantics in the parsing process and (b) is well suited to handling
domain-specific terminology by defining a small hand-crafted lexi-
con that encapsulates domain knowledge. CCG has been used to
parse natural language explanations into labeling rules in several
contexts [74, 82].

CCG background. A CCG takes as input a description of the lan-
guage syntax and semantics. It describes the syntax of words and
phrases using primitive categories such as noun (N), noun phrase
(NP), or sentence (S), and complex categories comprised of primitive
categories, such as S\NP (to express that it can combine a noun

Semi-Automated Protocol Disambiguation and Code Generation SIGCOMM ’21, August 23–28, 2021, Virtual Event, USA

phrase on the left and form a sentence). It describes semantics with
lambda expressions such as 𝜆𝑥.𝜆𝑦.@Is(𝑦, 𝑥) and 𝜆𝑥.@Compute(𝑥).

CCG employs a lexicon, which users can extend to capture
domain-specific knowledge. For example, we added the following
lexical entries to the lexicon to represent constructs found in
networking standards documents:

(1) checksum → NP: "checksum"
(2) is → {(S\NP)/NP: 𝜆𝑥.𝜆𝑦.@Is(𝑦, 𝑥)}
(3) zero → {NP: @Num(0)}

This expresses the fact (a) “checksum” is a special word in net-
working, (b) “is” can be assignment, and (c) zero can be a number.
CCG can use this lexicon to generate a logical form (LF) that com-
pletely captures the semantics of a phrase such as “checksum is
zero”: {S: @Is("checksum",@Num(0))}. Our code generator (§5) pro-
duces code from these.

Challenges. sage must surmount three challenges before using
CCG: (a) specify domain-specific syntax, (b) specify domain-specific
semantics, (c) extract structural and non-textual elements in stan-
dards documents (described below). Next we describe how we ad-
dress these challenges.

Specifying domain-specific syntax. Lexical entry (1) above spec-
ifies that checksum is a keyword in the vocabulary. Rather than
having a person specify such syntactic lexical entries, sage creates
a term dictionary of domain-specific nouns and noun-phrases using
the index of a standard networking textbook. This reduces human
effort. Before we run the semantic parser, we also need to identify
nouns and noun-phrases that occur generally in English, for which
we use an NLP tool called SpaCy [29].

Specifying domain-specific semantics. NLTK’s CCG [49] has
a built-in lexicon that captures the semantics of written English.
Even so, we have found it important to add domain-specific lexical
entries. For example, the lexical entry (2) above shows that the verb
is can represent the assignment of a value to a protocol field. In
sage, we manually generate these domain-specific entries, with
the intent that these semantics will generalize to many RFCs (see
also §6). Beyond capturing domain-specific uses of words (like
is), domain-specific semantics capture idiomatic usage common
to RFCs. For example, RFCs have field descriptions (like version
numbers, packet types) that are often followed by a single sentence
that has the (fixed) value of the field. For a CCG to parse this, it must
know that the value should be assigned to the field. Similarly, RFCs
sometimes represent descriptions for different code values of a type
field using an idiom of the form “0 = Echo Reply”. §6 quantifies the
work involved in generating the domain-specific lexicon.

Extracting structural and non-textual elements. Finally, RFCs
contain stylized elements, for which we wrote pre-processors. RFCs
use descriptive lists (e.g., field names and their values) and inden-
tation to note content hierarchy. Our pre-processor extracts these
relationships to aid in disambiguation (§4) and code generation (§5).
RFCs also represent header fields (and field widths) with ASCII art;
we extract field names and widths and generate data structures
(specifically, structs in C) to represent headers to enable automated

code generation (§5). Some RFCs [54] also contain pseudo-code,
which we represent as logical forms to facilitate code generation.

Running a CCG. After pre-processing, we run a CCG on each
sentence of an RFC. Ideally, a CCG should output exactly one logical
form for a sentence. In practice, it outputs zero or more logical
forms, some of which arise from CCG limitations, and some from
ambiguities inherent in the sentence.

4 DISAMBIGUATION

Next we describe how sage leverages domain knowledge to au-
tomatically resolve some ambiguities, where semantic parsing re-
sulted in either 0 or more than 1 logical forms.

4.1 Why Ambiguities Arise

To show how we automatically resolve ambiguities, we take ex-
amples from the ICMP RFC [63] for which our semantic parser
returned either 0 or more than 1 logical forms.

Zero logical forms. Several sentences in the ICMP RFC resulted
in zero logical forms after semantic parsing, all of which were
grammatically incomplete, lacking a subject:

A The source network and address from the original datagram’s data
B The internet header plus the first 64 bits of the original datagram’s

data
C If code = 0, identifies the octet where an error was detected
D Address of the gateway to which traffic for the network specified in

the internet destination network field of the original datagram’s
data should be sent

Such sentences are common in protocol header field descriptions.
The last sentence is difficult even for a human to parse.

More than 1 logical form. Several sentences resulted in more
than one logical form after semantic parsing. The following two
sentences are grammatically incorrect:

E If code = 0, an identifier to aid in matching timestamp and replies,
may be zero

F If code = 0, a sequence number to aid in matching timestamp and
replies, may be zero

The following example needs additional context, and contains im-
precise language:

G To form a information reply message, the source and destination
addresses are simply reversed, the type code changed to 16, and
the checksum recomputed

A machine parser does not realize that source and destination ad-
dresses refer to fields in the IP header. Similarly, it is unclear from
this sentence whether the checksum refers to the IP checksum or
the ICMP checksum. Moreover, the term type code is confusing,
even to a (lay) human reader, since the ICMP header contains both
a type field and a code field.

Finally, this sentence, discussed earlier (§2.1), is under-specified,
since it does not describe which byte the checksum computation
should end at:

H The checksum is the 16-bit ones’s complement of the one’s comple-
ment sum of the ICMP message starting with the ICMP Type

SIGCOMM ’21, August 23–28, 2021, Virtual Event, USA J.Yen.et al.

While sentences G and H are grammatically correct and should
have resulted in a single logical form, the CCG parser considers
them ambiguous as we explain next.

Causes of ambiguities: zero logical forms. ExamplesA through
C are missing a subject. In the common case when these sentences
describe a header field, that header field is usually the subject of
the sentence. This information is available to sage when it extracts
structural information from the RFC (§3). When a sentence that is
part of a field description has zero logical forms, sage can re-parse
that sentence by supplying the header. This approach does not
work for D; this is an incomplete sentence, but CCG is unable to
parse it even with the supplied header context. Ultimately, we had
to re-write that sentence to successfully parse it.

Causes of ambiguities: more than one logical form.Multiple
logical forms arise from more fundamental limitations in machine
parsing. Consider Figure 3, which shows multiple logical forms
arising for a single sentence. Each logical form consists of nested
predicates (similar to a statement in a functional language), where
each predicate has one or more arguments. A predicate represents
a logical relationship (@And), an assignment (@Is), a conditional
(@If), or an action (@Action) whose first argument is the name
of a function, and subsequent arguments are function parameters.
Finally, Figure 3 illustrates that a logical form can be naturally
represented as a tree, where the internal nodes are predicates and
leaves are (scalar) arguments to predicates.

Inconsistent argument types. In some logical forms, their ar-
guments are incorrectly typed, so they are obviously wrong. For
example, LF1 in Figure 3, the second argument of the compute ac-
tion must be the name of a function, not a numeric constant. CCG’s
lexical rules don’t support type systems, so cannot eliminate badly-
typed logical forms.

Order-sensitive predicate arguments. The parser generates
multiple logical forms for the sentence E. Among these, in one log-
ical form, code is assigned zero, but in the others, the code is tested
for zero. Sentence E has the form “If A, (then) B”, and CCG gener-
ates two different logical forms: @If(A,B) and @If(B,A). This is not
a mistake humans would make, since the condition and action are
clear from the sentence. However, CCG’s flexibility and expressive
power may cause over-generation of semantic interpretations in
this circumstance. This unintended behavior is well-known [28, 83].

Predicate order-sensitivity. Consider a sentence of the form
“A of B is C”. In this sentence, CCG generates two distinct logical
forms. In one, the @Of predicate is at the root of the tree, in the
other @Is is at the root of the tree. The first corresponds to the
grouping “(A of B) is C” and the second to the grouping “A of (B
is C)”. For sentences of this form, the latter is incorrect, but CCG
unable to generate disambiguate between the two.

Predicate distributivity. Consider a sentence of the form “A
and B is C”. This sentence exemplifies a grammatical structure
called coordination [75]3. For such a sentence, CCG will generate
two logical forms, corresponding to: “(A and B) is C” and “(A is
C) and (B is C)” (in the latter form, “C” distributes over “A” and
“B”). In general, both forms are equally correct. However, CCG
sometimes chooses to distribute predicates when it should not. This

3For example: Alice sees and Bob says he likes Ice Cream.

occurs because CCG is unable to distinguish between two uses
of the comma: one as a conjunction, and the other to separate a
dependent clause from an independent clause. In sentences with
a comma, CCG generates logical forms for both interpretations.
RFCs contain some sentences of the form “A, B is C”4. When CCG
interprets the comma to mean a conjunction, it generates a logical
form corresponding to “A is C and B is C”, which, for this sentence,
is clearly incorrect.

Predicate associativity. Consider sentence H , which has the
form “A of B of C”, where each of A, B, and C are predicates (e.g.,
A is the predicate @Action("16-bit-ones-complement"). In this
example, the CCG parser generates two semantic interpretations
corresponding to two different groupings of operations (one that
groups A and B, the other that groups B and C: Figure 4). In this
case, the @Of predicate is associative, so the two logical forms are
equivalent, but the parser does not know this.

4.2 Winnowing Ambiguous Logical Forms

We define the following checks to address each of the above types
of ambiguities (§4.1), which sage applies to sentences with multiple
logical forms, winnowing them down (often) to one logical form
(§6). These checks apply broadly because of the restricted way
in which specifications use natural language. While we derived
these by analyzing ICMP, we show that these checks also help
disambiguate text in other RFCs. At the end of this process, if a
sentence is still left with multiple logical forms, it is fundamentally
ambiguous, so sage prompts the user to re-write it.

Type. For each predicate, sage defines one or more type checks:
action predicates have function name arguments, assignments can-
not have constants on the left hand side, conditionals must be
well-formed, and so on.

Argument ordering. For each predicate for which the order of
arguments is important, sage defines checks that remove logical
forms that violate the order.

Predicate ordering. For each pair of predicates where one pred-
icate cannot be nested within another, sage defines checks that
remove order-violating logical forms.

Distributivity. To avoid semantic errors due to comma ambiguity,
sage always selects the non-distributive logical form version (in
our example, “(A and B) is C”).

Associativity. If predicates are associative, their logical form trees
(Figure 4) will be isomorphic. sage detects associativity using a
standard graph isomorphism algorithm.

5 CODE GENERATION

Next we discuss how we convert the intermediate representation
of disambiguated logical forms to code.

5.1 Challenges

We faced two main challenges in code generation: (a) representing
implicit knowledge about dependencies between two protocols or

4If a higher-level protocol uses port numbers, they are assumed to be in the first 64
data bits of the original datagram’s data.

Semi-Automated Protocol Disambiguation and Code Generation SIGCOMM ’21, August 23–28, 2021, Virtual Event, USA

Sentence For computing the checksum, the checksum field should be zero
LF 1 @AdvBefore(@Action(’compute’,’0’),@Is(@And(’checksum_field’,’checksum’),’0’))
LF 2 @AdvBefore(@Action(’compute’,’checksum’),@Is(’checksum_field’,’0’))

LF 3 @AdvBefore(’0’,@Is(@Action(’compute’,@And(’checksum_field’,’checksum’)),’0’))
LF 4 @AdvBefore(’0’,@Is(@And(’checksum_field’,@Action(’compute’,’checksum’)),’0’))

LF 2: @AdvBefore

@Action @Is

’compute ’checksum’ ’checksum_field’ ’0’

Figure 3: Example of multiple LFs from CCG parsing of “For computing the checksum, the checksum should be zero”.

#1 #2@StartsWith

@Is ’icmp_type’

’checksum’ @Of

@Of ’icmp_message’

Ones OnesSum

@StartsWith

@Is ’icmp_type’

’checksum’ @Of

Ones @Of

OnesSum ’icmp_message’

Figure 4: LF Graphs of sentence H .

a protocol and the OS and (b) converting a functional logical form
into imperative code.

Encoding protocol and environment dependencies. Net-
worked systems rely upon protocol stacks, where protocols higher
in the stack use protocols below them. For example, ICMP specifies
what operations to perform on IP header fields (e.g., sentence G in
§4), and does not specify but assumes an implementation of one’s
complement. Similarly, standards descriptions do not explicitly
specify what abstract functionality they require of the underlying
operating system (e.g., the ability to read interface addresses).

To address this challenge, sage requires a pre-defined static
framework that provides such functionality along with an API to
access and manipulate headers of other protocols, and to interface
with the OS. sage’s generated code (discussed below) uses the
static framework. The framework may either contain a complete
implementation of the protocols it abstracts, or, more likely, invoke
existing implementations of these protocols and services provided
by the OS.

Logical Forms as an Intermediate Representation. The parser
generates an LF to represent a sentence. For code generation, these
sentences (or fragments thereof) fall into two categories: actionable
and non-actionable sentences. Actionable sentences result in exe-
cutable code: they describe value assignments to fields, operations
on headers, and computations (e.g., checksum). Non-actionable sen-
tences do not specify executable code, but specify a future intent
such as “The checksum may be replaced in the future” or behavior
intended for other protocols such as “If a higher level protocol uses
port numbers, port numbers are assumed to be in the first 64 data bits
of the original datagram’s data”. Humans may intervene to iden-
tify non-actionable sentences; sage tags their logical forms with a
special predicate @AdvComment.

The second challenge is that parsers generate logical forms for
individual sentences, but the ordering of code generated from these
logical forms is not usually explicitly specified. Often the order in
which sentences occur matches the order in which to generate code
for those sentences. For example, an RFC specifies how to set field
values, and it is safe to generate code for these fields in the order in
which they appear. There are, however, exceptions to this. Consider
the sentence in Figure 3, which specifies that, when computing
the checksum, the checksum field must be zero. This sentence
occurs in the RFC after the sentence that describes how to compute

LF @Is(’type’, ’3’)
context {"protocol": "ICMP", "message": "Destination Unreachable

Message", "field": "type", "role": ""}
code hdr->type = 3;

Table 4: Logical form with context and resulting code.

checksum, but its executable codemust occur before. To address this,
sage contains a lexical entry that identifies, and appropriately tags
(using a special predicate @AdvBefore), sentences that describe
such advice (as used in functional and aspect-oriented languages).5

5.2 Logical Forms to Code

Pre-processing and contextual information. The process of
converting logical forms to code is multi-stage, as shown in the
right block of Figure 1. Code generation begins with pre-processing
actions. First, sage filters out logical forms with the @AdvCom-
ment predicate. Then, it prepares logical forms for code conversion
by adding contextual information. A logical form does not, by itself,
have sufficient information to auto-generate code. For example,
from a logical form that says ’Set (message) type to 3’ (@Is(type,
3)) it is not clear what “type” means and must be inferred from the
context in which that sentence occurs. In RFCs, this context is usu-
ally implicit from the document structure (the section, paragraph
heading, or indentation of text). sage auto-generates a context dic-
tionary for each logical form (or sentence) to aid code generation
(Table 4).

In addition to this dynamic context, sage also has a pre-defined
static context dictionary that encapsulates information in the static
context. This contains field names used in lower-level protocols
(e.g., the table maps terms source and destination addresses to cor-
responding fields in the IP header, or the term “one’s complement
sum” to a function that implements that term). During code gen-
eration, sage first searches the dynamic context, then the static
context.

Code generation. After preprocessing, sage generates code for a
logical form using a post-order traversal of the single logical form
obtained after disambiguation. For each predicate, sage uses the
context to convert the predicate to a code snippet using both a dic-
tionary of predicate-code snippet mappings and contextual informa-
tion; concatenating these code snippets results in executable code
for the logical form. For corner-cases, sage applies user-defined
conversions to fine-tune the resulting code.

sage then concatenates code snippets for all the logical forms in
a message into a packet handling function6. In general, for a given
message, it is important to distinguish between code executed at
the sender versus at the receiver, and to generate two functions,
one at the sender and one at the receiver. Whether a logical form

5Advice covers statements associated with a function that must be executed before,
after, or instead of that function. Here, the checksum must be set to zero before
computing the checksum.
6sage generated code examples are available at [69].

SIGCOMM ’21, August 23–28, 2021, Virtual Event, USA J.Yen.et al.

applies to the sender or the receiver is also encoded in the context
dictionary (Table 4). Also, sage uses the context to generate unique
names for the function, based on the protocol, the message type,
and the role, all of which it obtains from the context dictionaries.

Finally, sage processes advice at this stage to decide on the order
of the generated executable code. In its current implementation, it
only supports @AdvBefore, which inserts code before the invoca-
tion of a function.

These functions are inserted into a static framework at code
stitching (Figure 1). This framework provides required networking
functions such as I/O handling involving socket management or,
for testing purposes, PCAP read/write and helper functions (e.g.,
parity checks, checksum calculation).

Adapting the code generator to new protocol packet handling
functions might require some human effort in updating the conver-
sion tables. Additionally, new predicates need to be added to the
predicate-code snippet mapping when they are first introduced. We
found these steps require no deep protocol knowledge since most of
the rules are general. Significant engineering effort is only required
for implementing helper functions for the static framework, which
we expect will be rare after a larger library of these is developed.

Iterative discovery of non-actionable sentences. Non-
actionable sentences are those for which sage should not generate
code. Rather than assume that a human annotates each RFC with
such sentences before sage can execute, sage provides support
for iterative discovery of such sentences, using the observation
that a non-actionable sentence will usually result in a failure during
code generation. So, to discover such sentences, a user runs the
RFC through sage repeatedly. When it fails to generate code
for a sentence, it alerts the user to confirm whether this was a
non-actionable sentence or not, and annotates the RFC accordingly.
During subsequent passes, it tags the sentence’s logical forms with
@AdvComment, which the code generator ignores.

In ICMP, for example, there are 35 such sentences. Among RFCs
we evaluated, sage can automatically tag such code generation
failures as @AdvComment without human intervention (i.e., there
were no cases of an actionable sentence that failed code generation
once we defined the context).

6 EVALUATION

Next we quantify sage’s ability to find specification ambiguities,
its generality across RFCs, and the importance of disambiguation
and of our parsing and code generation extensions.

6.1 Methodology

Implementation. sage includes a networking dictionary, new
CCG-parsable lexicon entries, a set of inconsistency checks, and
LF-to-code predicate handler functions. We used the index of [42] to
create a dictionary of about 400 terms. sage adds 71 lexical entries
to an NLTK-based CCG parser [49]. 7 Overall, sage consists of 7,128
lines of code. In addition, the static framework is 1478 lines of code;
this framework is reused across all protocols.

7NLTK is a popular general-purpose NLP toolkit: over 100k+ GitHub repositories
depend on it [57]. We are aware of limitations of NLTK’s CCG parser; other tools such
as SPF [4] may address these limitations. We leave the comparison of the two toolkits
and possible migration to SPF to future work.

To winnow ambiguous logical forms for ICMP (§4.2), we defined
32 type checks, 7 argument ordering checks, 4 predicate ordering
checks, and 1 distributivity check. Argument ordering and predicate
ordering checks maintain a blocklist. Type checks use an allowlist
and are thus the most prevalent. The distributivity check has a
single implicit rule. For code generation, we defined 25 predicate
handler functions to convert LFs to code snippets. As we analyzed
additional protocols (IGMP, NTP and BFD), we manually added
more lexical entries and type checks, using the workflow described
in §2.3; we quantify the overhead of these in §6.3 and §6.4. Across
all of these protocols, sage auto-generated 554 lines of protocol
code after disambiguation.

Test Scenarios. First we examine the ICMP RFC, which defines 8
ICMP message types.8 Like the student assignments we analyzed
earlier, we generated code for each ICMP message type. To test
this for each message, as with the student projects, the client sends
test messages to the router which then responds with the appro-
priate ICMP message. For each scenario, we captured both sender
and receiver packets and verified correctness with tcpdump. We
include details of each scenario in the Appendix. To demonstrate
the generality of sage, we also evaluated IGMP, NTP, and BFD.

6.2 End-to-end Evaluation

Next we verify that ICMP code generated by sage produces packets
that interoperate correctly with Linux tools.

Packet capture based verification. In the first experiment, we
examined the packet emitted by a sage-generated ICMP implemen-
tation with tcpdump [76], to verify that tcpdump can read packet
contents correctly without warnings or errors. Specifically, for each
message type, for both sender and receiver side, we use the static
framework in sage-generated code to generate and store the packet
in a pcap file and verify it using tcpdump. tcpdump output lists packet
types (e.g., an IP packet with a time-exceeded ICMP message) and
will warn if a packet of truncated or corrupted packets. In all of our
experiments we found that sage generated code produces correct

packets with no warnings or errors.

Interoperationwith existing tools.Herewe test whether a sage-
generated ICMP implementation interoperates with tools like ping
and traceroute. To do so, we integrated our static framework code
and the sage-generated code into a Mininet-based framework used
for the course described in §2. With this framework, we verified,
with four Linux commands (testing echo, destination unreachable,
time exceeded, and traceroute behavior), that a sage-generated
receiver or router correctly processes echo request packets sent
by ping and TTL-limited data packets or packets to non-existent
destinations sent by traceroute, and its responses are correctly
interpreted by those programs. For all these commands, the gener-
ated code interoperates correctly with these tools. We also con-
ducted interoperability experiments on real machines. To do so, we
extended our static framework to send and receive ICMP packets on
raw sockets. The result was identical to our Mininet experiments.

8ICMP message types include destination unreachable, time exceeded, parameter
problem, source quench, redirect, echo/echo reply, timestamp/timestamp reply, and
information request/reply.

Semi-Automated Protocol Disambiguation and Code Generation SIGCOMM ’21, August 23–28, 2021, Virtual Event, USA

6.3 Exploring Generality: IGMP and NTP

To understand the degree to which sage generalizes to other proto-
cols, we ran it on two other protocols: parts of IGMP v1 as specified
in RFC 1112 [19] and NTP [54]. These RFCs contain conceptual
elements such as architecture description and behavior not specific
to network protocols (e.g., NTP stratums). These are currently not
supported by sage. In §7, we discuss what it will take to extend
sage to completely parse these RFCs and generalize it to a larger
class of protocols.

IGMP. In RFC 1112 [19], we parsed the packet header description
in Appendix I of the RFC. To do this, we added to sage 8 lexical
entries (beyond the 71 we had added for ICMP entries), 4 predicate
function handlers (from 21 for ICMP), and 1 predicate ordering
check (from 7 for ICMP). For IGMP, sage generates the sending of
host membership and query message. We also verified interoper-
ability of the generated code. In our test, our generated code sends a
host membership query to a commodity switch. We verified, using
packet captures, that the switch’s response is correct, indicating
that it interoperates with the sender code.

NTP. For NTP [54], we parsed Appendices A and B: these describe,
respectively, how to encapsulate NTP messages in UDP, and the
NTP packet header format and field descriptions. To parse these,
we added only 5 additional lexical entries and 1 predicate ordering
check beyond what we already had for IGMP and ICMP.

6.4 Exploring Generality: BFD

Thus far, we have discussed how sage supports headers, field de-
scriptions, constraints, and basic behaviors. We now explore apply-
ing sage to BFD [35], a recent protocol whose specification contains
sentences that describe how to initiate/update state variables. We
have used sage to parse such state management sentences (§6.8.6
in RFC 5880). The RFC contains additional components that sage
currently can not handle. These include algorithms (e.g., timing
calculation) and complex communication patterns (e.g., authentica-
tion). In §7, we discuss what it will take to extend sage to completely
parse BFD.

BFD Introduction. BFD is used to detect faults between two nodes.
Each node maintains multiple state variables for both protocol and
connection state. Connection state is represented by a 3-state ma-
chine and represents the status (e.g., established, being established,
or being torn down) of the session between nodes. Protocol state
variables are used to track local and remote configuration.9

State Management Dictionary. A state management sentence
describes how to use or modify protocol or connection state in
terms of state management variables. For example, bfd.SessionState
is a connection state variable; Up is a permitted value. We extend
our term dictionary to include these state variables and values as
noun phrases.

Parsing.We focus on explaining our analysis of such state manage-
ment sentences. sage is also able to parse the BFD packet header
described in §4.1 of RFC 5880. We analyzed 22 state management
sentences in §6.8.6 of RFC 5880 which involve a greater diversity

9This is common across protocols: for example, TCP keeps track of protocol state
regarding ACK reception.

Category Example Count

More than
1 LF

To form an echo reply message, the source
and destination addresses are simply reversed,
the type code changed to 0, and the checksum
recomputed.

4

0 LF

Address of the gateway to which traffic for the
network specified in the internet destination
network field of the original datagram’s data
should be sent.

1

Imprecise
sentence

If code = 0, an identifier to aid in matching
echos and replies, may be zero. 6

Table 5: Examples of categorized rewritten text.

of operations than pure packet generation. To support these, we
added 15 lexical entries, 10 predicates, and 8 function handlers.

6.5 Disambiguation

Revising a specification inevitably requires some degree of man-
ual inspection and disambiguation. sage makes this systematic: it
identifies and fixes ambiguities when it can, alerts specification au-
thors or developers when it cannot, and can help iteratively verify
re-written parts of the specification.

Ambiguous sentences. When we began to analyze RFC 792 with
sage, we immediately found many ambiguities we highlighted
throughout this paper; these result in more than one logical form
even after manual disambiguation.

We also encountered ostensibly disambiguated text that yields
zero logical forms; this is caused by incomplete sentences. For ex-
ample, “If code = 0, identifies the octet where an error was detected”
fails CCG parsing due to lack of subject in the sentence, and indeed
it may not be parseable for a human lacking context regarding the
referent. Such sentence fragments require human guesswork, but,
as we have observed in §4, we can leverage structural context in
the RFC in cases where the referent of these sentences is a field
name. In these cases, sage is able to correctly parse the sentence
by supplying the parser with the subject.

Among 87 instances in RFC 792, we found 4 that result in more
than 1 logical form and 1 results in 0 logical forms (Table 5). We
rewrote these 5 ambiguous (of which only 3 are unique) sentences to
enable automated protocol generation. These ambiguous sentences
were found after sage had applied its checks (§4.2)—these are in a
sense true ambiguities in the ICMP RFC. In sage, we require the user
to revise such sentences, according to the feedback loop as shown in
Figure 2. sage keeps the resulting LFs from an ambiguous sentence
after applying the disambiguation checks; comparing these LFs can
help users identify where the ambiguity lies, thus guiding their
revisions. In our end-to-end experiments (§6.2), we evaluated sage
using the modified RFC with these ambiguities fixed.

Under-specified behavior. sage can also discover under-
specified behavior through unit testing; generated code can be
applied to unit tests to see if the protocol implementation is
complete. In this process, we discovered 6 sentences that are
variants of this sentence: “If code = 0, an identifier to aid in
matching echos and replies, may be zero”. This sentence does not
specify whether the sender or the receiver or both can (potentially)
set the identifier. The correct behavior is only for the sender to
follow this instruction; a sender may generate a non-zero identifier,

SIGCOMM ’21, August 23–28, 2021, Virtual Event, USA J.Yen.et al.

Base Type Arg. Order Pred.
Order

Distrib. Assoc.
1
2
5
10
20
40

#
of

Lo
gi
ca
lF
or
m
s max

avg
min

(a) ICMP

Base Type Arg. Order Pred.
Order

Distrib. Assoc.
1

2
3
4
5

#
of

Lo
gi
ca
lF
or
m
s max

avg
min

(b) IGMP

Base Type Arg. Order Pred.
Order

Distrib. Assoc.
1
2
5
10
20
50

#
of

Lo
gi
ca
lF
or
m
s max

avg
min

(c) BFD

Figure 5: Number of LFs after Inconsistency Checks on ICMP/IGMP/BFD text: for each ambiguous sentence, sequentially executing checks

on LFs (Base) reduces inconsistencies; after the last Associativity check, the final output is a single LF.

1

3

5

7

4.23
4.92

2.26

0.23

#
of

LF
sp

er
Se
nt
en
ce

5

10

15

18

7

15

5#
of

A
ffe

ct
ed

Se
nt
en
ce
s

Type Argument Ordering Predicate Ordering Distributivity

Figure 6: Effect of individual disambiguation checks on RFC 792:

Left: average number of LFs filtered by the check per ambiguous

sentence with standard error Right: number of ambiguous sen-

tences affected out of 42 total.

and the receiver should set the identifier to be zero in the reply.
Not doing so results in a non-interoperability with Linux’s ping
implementation.

Efficacy of logical form winnowing. sage winnows logical
forms so it can automatically disambiguate text when possible,
reducing manual labor in disambiguation. To showwhy winnowing
is necessary, and how effective each of its checks can be, we
collect text fragments that could lead to multiple logical forms, and
calculate how many are generated before and after we perform
inconsistency checks along with the isomorphism check. We show
the extent to which each check is effective in reducing logical
forms: in Figure 5a, the max line shows the description that leads
to the highest count of generated logical forms and shows how the
value goes down to one after all checks are completed. Similarly,
the min line represents the situation for the text that generates the
fewest logical forms before applying checks. Between the min and
max lines, we also show the average trend among all sentences.

Figure 5a shows that all sentences resulted in 2-46 LFs, but sage’s
winnowing reduces this to 1 (after human-in-the-loop rewriting
of true ambiguities). Of these, type, argument ordering and the
associativity checks are the most effective. We apply the same
analysis to IGMP (Figure 5b). In IGMP, the distributivity check
is also important. This analysis shows the cumulative effect of
applying checks in the order shown in the figure. We also apply
the same analysis to BFD state management sentences (Figure 5c).
We discover some longer sentences could result in up to 56 LFs.

A more direct way to understand the efficacy of checks is shown
in Figure 6 (for ICMP). To generate this figure, for each sentence, we
apply only one check on the base set of logical forms and measure
howmany LFs the check can reduce. The graphs show themean and
standard deviation of this number across sentences, and the number
of sentences to which a check applies. For ICMP, as before, type

Sentence Label #LFs

The ’address’ of the ’source’ in an ’echo message’ will be
the ’destination’ of the ’echo reply’ ’message’. Poor 16

The ’address’ of the ’source’ in an ’echo message’ will be
the ’destination’ of the ’echo reply message’. Good 6

Table 6: Comparison of the number of logical forms (LFs) be-

tween good and poor noun phrase labels.

Increase Decrease Zero

Domain-specific Dict. 17 0 0
Noun-phrase Labeling 0 8 54

Table 7: Effect of disabling domain-specific dictionary and noun-

phrase labeling on number of logical forms.

and predicate ordering checks reduced LFs for the most number of
sentences, but argument ordering reduced the most logical forms.
For IGMP (omitted for brevity), the distributivity checks were also
effective, reducing one LF every 2 sentences.

Figure 5 does not include NTP; for the parts of this RFC that
sage analyzes, the base semantic parser produces at most 2 LFs
(after adding a small number of lexical entries and checks §6.3), and
the additional checks winnow these down to 1 LF.

Importance of Noun Phrase Labeling. sage requires careful la-
beling of noun-phrases using SpaCy based on a domain-specific
dictionary (§3). This is an important step that can significantly re-
duce the number of LFs for a sentence. To understand why, consider
the example in Table 6, which shows two different noun-phrase
labels, which differ in the way sage labels the fragment “echo reply
message”. When the entire fragment is not labeled as a single noun
phrase, CCG outputs many more logical forms, making it harder
to disambiguate the sentence. In the limit, when sage does not
use careful noun phrase labeling, CCG is unable to parse some
sentences at all (resulting in 0 LFs).

Table 7 quantifies the importance of these components. Remov-
ing the domain-specific dictionary increases the number of logical
forms (before winnowing) for 17 of the 87 sentences in the ICMP
RFC. Completely removing noun-phrase labeling using SpaCy has
more serious consequences: 54 sentences result in 0 LF. Eight other
sentences result in fewer LFs, but these reduce to 0 after winnowing.

7 SAGE LIMITATIONS

While sage takes a significant step toward automated specifica-
tion processing, much work remains.

Specification components.To understand this, we havemanually
inspected several protocol specifications and categorized compo-
nents of specifications into two categories: syntactic and conceptual.

Semi-Automated Protocol Disambiguation and Code Generation SIGCOMM ’21, August 23–28, 2021, Virtual Event, USA

I
P
v
4

T
C
P

U
D
P

I
C
M
P

N
T
P

O
S
P
F
2

B
G
P
4

R
T
P

B
F
D

♦ Packet Format x x x x x x x x x
♦ Interoperation x x x x x x x x
♦ Pseudo Code x x x x x x x x x

+ State/Session Mngmt. x x x x x
Comm. Patterns x x x x x x

Architecture x x x

Table 8: Conceptual components in RFCs. sage supports compo-

nents marked with ♦ (fully) and + (partially).

I
P
v
4

T
C
P

U
D
P

I
C
M
P

N
T
P

O
S
P
F
2

B
G
P
4

R
T
P

B
F
D

♦ Header Diagram x x x x x x x x x
♦ Listing x x x x x x x x x

Table x x x x x x x
Algorithm Description x x x x x x

Other Figures x x x x x
Seq./Comm. Diagram x x x x x

State Machine Diagram x x

Table 9: Syntactic components in RFCs. sage supports parsing

the syntax of those marked with ♦ (fully).

sentence The timeout procedure is called in client mode and symmetric
mode when the peer timer reaches the value of the timer
threshold variable.

code if (peer.timer >= peer.threshold) {
if (symmetric_mode || client_mode) {
timeout_procedure();

}
}

Table 10: NTP peer variable sentence and resulting code.

Conceptual components (Table 8) describe protocol structure and
behavior: these include header field semantic descriptions, specifi-
cation of sender and receiver behavior, who should communicate
with whom, how sessions should be managed, and how protocol
implementations should be architected.

RFC authors augment conceptual text with syntactic components
(Table 9). These include forms that provide better understanding
of a given idea (e.g., header diagrams, tables, state machine de-
scriptions, communication diagrams, and algorithm descriptions).
sage includes support for two of these elements; adding support
for others is not conceptually difficult, but may require significant
programming effort.

Conceptual components may require significant additional re-
search. Most popular standards have many, if not all, of these ele-
ments. sage supports parsing of 3 of the 6 conceptual elements in
Table 8, for ICMP and parts of IGMP, NTP, and BFD. Our results
(§6.2) show that extending these elements to other protocols can,
in some cases, require marginal extensions at each step. In addition,
sage is already able to parse state management for some protocols.
However, much work remains to achieve complete generality, of
which state and session management is a significant piece.

BFD statemanagement.Whenwe performed CCG parsing and
code generation on state management sentences, we found two
types of sentences that could not be parsed correctly (Table 11).
Both of these sentences reveal limitations in the underlying NLP
approach we use.

The CCG parser treats each sentence independently, but the
first example in Table 11 illustrates dependencies across sentences.

Type Example

N
e
s
t
e
d
c
o
d
e

O
rig

in
al If the Your Discriminator field is nonzero, it MUST be used to select

the session with which this BFD packet is associated. If no session is
found, the packet MUST be discarded.

Re
w
rit
te
n If the Your Discriminator field is nonzero, it MUST be used to select

the session with which this BFD packet is associated. If the Your
Discriminator field is nonzero and no session is found, the packet
MUST be discarded.

R
e
p
h
r
a
s
i
n
g

O
rig

in
al

If bfd.RemoteDemandMode is 1, bfd.SessionState is Up, and
bfd.RemoteSessionState is Up, Demand mode is active on the remote
system and the local system MUST cease the periodic transmission
of BFD Control packets.

Re
w
rit
te
n If bfd.RemoteDemandMode is 1, bfd.SessionState is Up, and

bfd.RemoteSessionState is Up, the local system MUST cease the
periodic transmission of BFD Control packets.

Table 11: Challenging BFD state management sentences.

Specifically, sage must infer that the reference to no session in
the second sentence must be matched to the session in the first
sentence. This is an instance of the general problem of co-reference
resolution [27], which can resolve identical noun phrases across
sentences. To our knowledge, semantic parsers cannot yet resolve
such references. To get sage to parse the text, we rewrote the second
sentence to clarify the co-reference, as shown in Table 11.

The second sentence contains three conditionals, followed a
non-actionable fragment that rephrases one of the conditionals.
Specifically, the first condition if bfd.RemoteDemandMode is 1, is
rephrased, in English, immediately afterwards (Demand mode is ac-
tive on the remote node). To our knowledge, current NLP techniques
cannot easily identify rephrased sentence fragments. sage relies
on human annotation to identify this fragment as non-actionable;
after removing the fragment, it is able to generate code correctly
for this sentence.

NTP state management. The NTP RFC has complex sentences
on maintaining peer and system variables, to decide when each
procedure should be called and when variables should be updated.
One example sentence, shown in Table 10, concerns when to trigger
timeout. sage is able to parse the sentence into an LF and turn it into
a code snippet. However, NTP requires more complex co-reference
resolution, as other protocols may too [27, 31]: in NTP, context for
state management is spread throughout the RFC and sage will need
to associate these conceptual references. For instance, the word
“and” in the example (Table 10) could be equivalent to a logical AND
or a logical OR operator depending on whether symmetric mode
and client mode are mutually exclusive or not. A separate section
clarifies that the correct semantics is OR.

Reducing Human Effort. An important direction for future work
is to minimize the manual effort currently required for disambigua-
tion and code generation. Our winnowing reduces the number of
instances where users have to supply new lexical entries or checks
(§4.2); we cannot quantify the number of such new entries required
for RFC text we have yet to examine, but expect that it will decrease
over time as more protocols are supported and more entries are in
sage’s entry database. We also cannot state definitively the gener-
ality of our current code generation approach. When users have to
intervene, sage reduces cognitive load for the user by suggesting
possible lexical entry additions. Future work will need to explore
similar usability enhancements for other human input tasks: adding

SIGCOMM ’21, August 23–28, 2021, Virtual Event, USA J.Yen.et al.

new predicate checks, specifying cross-references (references to
other protocols in a specification), and identifying non-actionable
sentences. Future work can also explore tools that automate some of
these steps entirely (e.g., identifying cross-references, or identifying
non-actionable sentences) as well as techniques that improve the
readability of generated code. Finally, we have attempted to make
sage’s auto-generated code clear by ensuring that we adopt nam-
ing conventions for variables from RFCs and automatically emit
context (i.e., add an original sentence from an RFC as a comment)
for each snippet of generated code. Future work can explore how
to auto-generate truly elegant code.

8 RELATEDWORK

Protocol Languages / Formal Specification Techniques. Nu-
merous protocol languages have been proposed over the years. In
the ’80s, Estelle [14] and LOTOS [12] provided formal descriptions
for OSI protocol suites. Although these formal techniques can spec-
ify precise protocol behavior, it is hard for people to understand
and thus use for specification or implementation. Estelle used finite
state machine specifications to depict how protocols communi-
cate in parallel, passing on complexity, unreadability, and rigidity
to followup work [13, 70, 80]. Other research such as RTAG [3],
x-kernel [30], Morpheus [1], Prolac [40], Network Packet Represen-
tation [53], and NCT [52] gradually improved readability, structure,
and performance of protocols, spanning specification, testing, and
implementation. However, we find and the networking community
has found through experience, that English-language specifications
are more readable than such protocol languages.

Protocol Analysis. Past research [10–12] developed techniques
to reason about protocol behaviors in an effort to minimize bugs.
Such techniques used finite state machines, higher-order logic, or
domain-specific languages to verify protocols. Another thread of
work [38, 39, 45] explored the use of explicit-state model-checkers
to find bugs in protocol implementations. This thread also inspired
work (e.g., [59]) on discovering non-interoperabilities in protocol
implementations. While our aims are similar, our focus is end-to-
end, from specification to implementation, and on identifyingwhere
specification ambiguity leads to bugs.

NLP for Log Mining and Parsing. Log mining and parsing are
techniques that leverage log files to discover and classify different
system events (e.g., ’information’, ’warning’, and ’error’). Past stud-
ies have explored Principal Component Analysis [84], rule-based
analysis [25], statistic analysis [56, 79], and ML-based methods [72]
to solve log analysis problems. Recent work [6, 9] has applied NLP
to extract semantic meanings from log files for event categorization.
sage is complementary to this line of work: while it uses NLP to
categorize sender/receiver roles, sage takes the additional step of
generating code.

Program Synthesis. To automatically generate code, prior work
has explored program synthesis. Reactive synthesis [61, 62] relies on
interaction with users to read input for generating output programs.
Inductive synthesis [2] recursively learns logic or functions with
incomplete specifications. Proof-based synthesis (e.g., [73]) takes a
correct-by-construction approach to develop inductive proofs to
extract programs. Type-based synthesis [24, 58] takes advantage of

the types provided in specifications to refine output. In networking,
program synthesis techniques can automate (e.g., [50, 51]) updating
of network configurations, and generating programmable switch
code [26]. It may be possible to use program synthesis in sage to
generate protocol fragments.

Semantic Parsing and Code Generation. Semantic parsing is a
fundamental task in NLP that aims to transform unstructured text
into structured LFs for subsequent execution [8]. For example, to
answer the question “Which team does Frank Hoffman play for?”, a
semantic parser generates a structured query “SELECT TEAM from
table where PLAYER=Frank Hoffman” with SQL Standard Gram-
mar [18]. A SQL interpreter can execute this query on a database
and give the correct answer [34]. Apart from the application to
question answering, semantic parsing has also been successful in
navigating robots [77], understanding instructions [15], and play-
ing language games [81]. Research in generating code from natural
language goes beyond LFs, to output concrete implementations
in high-level general-purpose programming languages [48]. This
problem is usually formulated as syntax-constrained sequence gen-
eration [46, 87]. The two topics are closely related to our work since
the process of implementing network protocols from RFCs requires
the ability to understand and execute instructions.

Pre-trained Language Models. Recently, high-capacity pre-
trained language models [20, 43, 60, 85] have dramatically
improved NLP in question answering, natural language inference,
text classification, etc. The general approach is to first train a model
on a huge corpus with unsupervised learning (i.e., pre-training),
then re-use these weights to initialize a task-specific model that is
later trained with labeled data (i.e.,, fine-tuning). In the context
of sage, such pre-trained models advance improve semantic
parsing [89, 90]. Recent work [23] also attempts to pre-train
on programming and natural languages simultaneously, and
achieves state-of-the-art performance in code search and code
documentation generation. However, direct code generation
using pre-trained language models is an open research area and
requires massive datasets; the best model for a related problem,
natural language generation, GPT [65], requires 8 M web pages for
training.

9 CONCLUSIONS

This paper describes sage, which introduces semi-automated proto-
col processing across multiple protocol specifications. sage includes
domain-specific extensions to semantic parsing and automated dis-
covery of ambiguities and enables disambiguation; sage can convert
these specifications to code. Future work can extend sage to parse
more specification elements, and devise better methods to involve
humans in the loop to detect and fix ambiguities and guide the
search for bugs.

Acknowledgements.We thank our shepherd Noa Zilberman, the
anonymous reviewers, and the artifact evaluation committee for
their feedback. This paper was supported in part by the U.S. Na-
tional Science Foundation (CNS-1901523 and IIS-2048211), and by
an Annenberg Fellowship at USC.

Semi-Automated Protocol Disambiguation and Code Generation SIGCOMM ’21, August 23–28, 2021, Virtual Event, USA

REFERENCES

[1] Abbott, M. B., and Peterson, L. L. A language-based approach to protocol
implementation. IEEE/ACM transactions on networking (1993).

[2] Alur, R., Bodik, R., Dallal, E., Fisman, D., Garg, P., Juniwal, G., Kress-Gazit,
H., Madusudan, P., Martin, M., Raghothman, M., et al. Syntax-guided synthe-
sis. dependable software systems engineering. NATO Science for Peace and Security
Series (2014). http://sygus. seas. upenn. edu/files/sygus_extended. pdf (2014).

[3] Anderson, D. P. Automated protocol implementation with rtag. IEEE Transac-
tions on Software Engineering 14, 3 (1988), 291–300.

[4] Artzi, Y. Cornell SPF: Cornell Semantic Parsing Framework, 2016.
[5] Artzi, Y., FitzGerald, N., and Zettlemoyer, L. S. Semantic parsing with

combinatory categorial grammars. ACL (Tutorial Abstracts) 3 (2013).
[6] Aussel, N., Petetin, Y., and Chabridon, S. Improving performances of log

mining for anomaly prediction through nlp-based log parsing. In 2018 IEEE 26th
International Symposium on Modeling, Analysis, and Simulation of Computer and
Telecommunication Systems (MASCOTS) (2018), IEEE, pp. 237–243.

[7] Beckett, R., Mahajan, R., Millstein, T., Padhye, J., and Walker, D. Network
configuration synthesis with abstract topologies. SIGPLAN Not. 52, 6 (June 2017),
437–451.

[8] Berant, J., Chou, A., Frostig, R., and Liang, P. Semantic parsing on freebase
from question-answer pairs. In Proceedings of the 2013 conference on empirical
methods in natural language processing (2013), pp. 1533–1544.

[9] Bertero, C., Roy, M., Sauvanaud, C., and Trédan, G. Experience report: Log
mining using natural language processing and application to anomaly detection.
In 2017 IEEE 28th International Symposium on Software Reliability Engineering
(ISSRE) (2017), IEEE, pp. 351–360.

[10] Bhargavan, K., Obradovic, D., and Gunter, C. A. Formal verification of
standards for distance vector routing protocols. Journal of the ACM (JACM) 49, 4
(2002), 538–576.

[11] Bishop, S., Fairbairn, M., Norrish, M., Sewell, P., Smith, M., and Wans-
brough, K. Rigorous specification and conformance testing techniques for
network protocols, as applied to tcp, udp, and sockets. In Proceedings of the 2005
conference on Applications, technologies, architectures, and protocols for computer
communications (2005), pp. 265–276.

[12] Bolognesi, T., and Brinksma, E. Introduction to the iso specification language
lotos. Computer Networks and ISDN systems 14, 1 (1987).

[13] Boussinot, F., and De Simone, R. The esterel language. Proceedings of the IEEE
79, 9 (1991), 1293–1304.

[14] Budkowski, S., and Dembinski, P. An introduction to estelle: a specification
language for distributed systems. Computer Networks and ISDN systems 14, 1
(1987), 3–23.

[15] Chen, D. L., and Mooney, R. J. Learning to interpret natural language navigation
instructions from observations. In Twenty-Fifth AAAI Conference on Artificial
Intelligence (2011).

[16] Clark, D. D. A cloudy crystal ball: visions of the future. Proceedings of the
Twenty-Fourth Internet Engineering Task Force (1992), 539–544.

[17] D. Harkins, E. Secure Password Ciphersuites for Transport Layer Security (TLS).
RFC 8492, 2019.

[18] Date, C. J. A Guide to the SQL Standard: A User’s Guide to the Standard Relational
Language SQL. Addison-Wesley Longman Publishing Co., Inc., USA, 1987.

[19] Deering, D. S. E. Host extensions for IP multicasting. RFC 1112, 1989.
[20] Devlin, J., Chang, M.-W., Lee, K., and Toutanova, K. Bert: Pre-training of

deep bidirectional transformers for language understanding. arXiv preprint
arXiv:1810.04805 (2018).

[21] Dong, L., and Lapata, M. Coarse-to-fine decoding for neural semantic parsing.
arXiv preprint arXiv:1805.04793 (2018).

[22] Editor, R., and Flanagan, H. RFC Style Guide. RFC 7322, Sept. 2014.
[23] Feng, Z., Guo, D., Tang, D., Duan, N., Feng, X., Gong, M., Shou, L., Qin, B., Liu,

T., Jiang, D., and Zhou, M. Codebert: A pre-trained model for programming
and natural languages. ArXiv abs/2002.08155 (2020).

[24] Feser, J. K., Chaudhuri, S., and Dillig, I. Synthesizing data structure trans-
formations from input-output examples. ACM SIGPLAN Notices 50, 6 (2015),
229–239.

[25] Fu, Q., Lou, J.-G., Wang, Y., and Li, J. Execution anomaly detection in distributed
systems through unstructured log analysis. In 2009 ninth IEEE international
conference on data mining (2009), IEEE, pp. 149–158.

[26] Gao, X., Kim, T., Wong, M. D., Raghunathan, D., Varma, A. K., Kannan,
P. G., Sivaraman, A., Narayana, S., and Gupta, A. Switch code generation
using program synthesis. In Proceedings of the Annual Conference of the ACM
Special Interest Group on Data Communication on the Applications, Technologies,
Architectures, and Protocols for Computer Communication (New York, NY, USA,
2020), SIGCOMM ’20, Association for Computing Machinery, p. 44–61.

[27] Group, S. N. Corenlp coreference resolution. https://stanfordnlp.github.io/
CoreNLP/coref.html.

[28] Hockenmaier, J., and Bisk, Y. Normal-form parsing for combinatory categorial
grammars with generalized composition and type-raising. In Proceedings of the
23rd International Conference on Computational Linguistics (Coling 2010) (Beijing,

China, Aug. 2010), Coling 2010 Organizing Committee, pp. 465–473.
[29] Honnibal, M., and Montani, I. spaCy 2: Natural language understanding with

Bloom embeddings, convolutional neural networks and incremental parsing. To
appear, 2017.

[30] Hutchinson, N. C., and Peterson, L. L. The x-kernel: An architecture for
implementing network protocols. IEEE Transactions on Software engineering, 1
(1991), 64–76.

[31] Institute, A. A. AllenNLP Coreference Resolution. https://demo.allennlp.org/
coreference-resolution.

[32] Ipp interoperability testing event #2. http://www.pwg.org/ipp/testing/bake2.
html.

[33] Jethanandani, M., Agarwal, S., Huang, L., and Blair, D. YANG Data Model
for Network Access Control Lists (ACLs). RFC 8519, 2019.

[34] Kamath, A., and Das, R. A survey on semantic parsing. arXiv preprint
arXiv:1812.00978 (2018).

[35] Katz, D., and Ward, D. Bidirectional Forwarding Detection (BFD). RFC 5880,
2010.

[36] Kempson, R. M., and Cormack, A. Ambiguity and quantification. Linguistics
and Philosophy 4, 2 (1981), 259–309.

[37] Kessens, D., Bates, T. J., Alaettinoglu, C., Meyer, D., Villamizar, C., Terpstra,
M., Karrenberg, D., and Gerich, E. P. Routing Policy Specification Language
(RPSL). RFC 2622, June 1999.

[38] Killian, C., Anderson, J. W., Jhala, R., and Vahdat, A. Life, death, and the
critical transition: Finding liveness bugs in systems code. In 4th USENIX Sym-
posium on Networked Systems Design & Implementation (NSDI 07) (2007), NSDI,
USENIX Association.

[39] Killian, C. E., Anderson, J. W., Braud, R., Jhala, R., and Vahdat, A. M. Mace:
language support for building distributed systems. ACM SIGPLAN Notices 42, 6
(2007), 179–188.

[40] Kohler, E., Kaashoek,M. F., andMontgomery, D. R. A readable tcp in the prolac
protocol language. In Proceedings of the conference on Applications, technologies,
architectures, and protocols for computer communication (1999), pp. 3–13.

[41] Krishnamurthy, J., Dasigi, P., and Gardner, M. Neural semantic parsing with
type constraints for semi-structured tables. In Proceedings of the 2017 Conference
on Empirical Methods in Natural Language Processing (2017), pp. 1516–1526.

[42] Kurose, J., and Ross, K. Computer networking: A top down approach, 2012.
[43] Lan, Z., Chen, M., Goodman, S., Gimpel, K., Sharma, P., and Soricut, R. Albert:

A lite bert for self-supervised learning of language representations. arXiv preprint
arXiv:1909.11942 (2019).

[44] Lantz, B., Heller, B., and McKeown, N. A network in a laptop: rapid proto-
typing for software-defined networks. In Proceedings of the 9th ACM SIGCOMM
Workshop on Hot Topics in Networks (2010), pp. 1–6.

[45] Lee, H., Seibert, J., Killian, C. E., and Nita-Rotaru, C. Gatling: Automatic
attack discovery in large-scale distributed systems. In NDSS (2012).

[46] Liang, C., Berant, J., Le, Q., Forbus, K. D., and Lao, N. Neural symbolic
machines: Learning semantic parsers on freebase with weak supervision. arXiv
preprint arXiv:1611.00020 (2016).

[47] Lin, X. V., Wang, C., Pang, D., Vu, K., and Ernst, M. D. Program synthesis from
natural language using recurrent neural networks. University of Washington
Department of Computer Science and Engineering, Seattle, WA, USA, Tech. Rep.
UW-CSE-17-03-01 (2017).

[48] Ling, W., Grefenstette, E., Hermann, K. M., Kočiskỳ, T., Senior, A., Wang, F.,
and Blunsom, P. Latent predictor networks for code generation. arXiv preprint
arXiv:1603.06744 (2016).

[49] Loper, E., and Bird, S. Nltk: the natural language toolkit. arXiv preprint
cs/0205028 (2002).

[50] McClurg, J., Hojjat, H., Černỳ, P., and Foster, N. Efficient synthesis of network
updates. Acm Sigplan Notices 50, 6 (2015), 196–207.

[51] McClurg, J., Hojjat, H., Foster, N., and Černỳ, P. Event-driven network
programming. ACM SIGPLAN Notices 51, 6 (2016), 369–385.

[52] McMillan, K. L., and Zuck, L. D. Formal specification and testing of QUIC. In
Proceedings of ACM SIGCOMM (2019).

[53] McQuistin, S., Band, V., Jacob, D., and Perkins, C. Parsing protocol standards
to parse standard protocols. In Proceedings of the Applied Networking Research
Workshop (New York, NY, USA, 2020), ANRW ’20, Association for Computing
Machinery, p. 25–31.

[54] Mills, D. Network Time Protocol (version 1) specification and implementation.
RFC 1059, 1988.

[55] Monsanto, C., Reich, J., Foster, N., Rexford, J., and Walker, D. Composing
software defined networks. In 10th USENIX Symposium on Networked Systems De-
sign and Implementation (NSDI 13) (Lombard, IL, Apr. 2013), USENIX Association,
pp. 1–13.

[56] Nagaraj, K., Killian, C., and Neville, J. Structured comparative analysis of
systems logs to diagnose performance problems. In Presented as part of the 9th
{USENIX} Symposium on Networked Systems Design and Implementation ({NSDI}
12) (2012), pp. 353–366.

[57] List of NLTK dependents. https://github.com/nltk/nltk/network/dependents.

https://stanfordnlp.github.io/CoreNLP/coref.html
https://stanfordnlp.github.io/CoreNLP/coref.html
https://demo.allennlp.org/coreference-resolution
https://demo.allennlp.org/coreference-resolution
http://www.pwg.org/ipp/testing/bake2.html
http://www.pwg.org/ipp/testing/bake2.html
https://github.com/nltk/nltk/network/dependents

SIGCOMM ’21, August 23–28, 2021, Virtual Event, USA J.Yen.et al.

[58] Osera, P.-M., and Zdancewic, S. Type-and-example-directed program synthesis.
ACM SIGPLAN Notices 50, 6 (2015), 619–630.

[59] Pedrosa, L., Fogel, A., Kothari, N., Govindan, R., Mahajan, R., andMillstein,
T. Analyzing protocol implementations for interoperability. In 12th {USENIX}
Symposium on Networked Systems Design and Implementation ({NSDI} 15) (2015),
pp. 485–498.

[60] Peters, M. E., Neumann, M., Iyyer, M., Gardner, M., Clark, C., Lee, K., and
Zettlemoyer, L. Deep contextualized word representations. arXiv preprint
arXiv:1802.05365 (2018).

[61] Piterman, N., Pnueli, A., and Sa’ar, Y. Synthesis of reactive (1) designs. In
InternationalWorkshop on Verification, Model Checking, and Abstract Interpretation
(2006), Springer, pp. 364–380.

[62] Pnueli, A., and Rosner, R. On the synthesis of a reactive module. In Proceedings
of the 16th ACM SIGPLAN-SIGACT symposium on Principles of programming
languages (1989), pp. 179–190.

[63] Postel, J. Internet Control Message Protocol. RFC 792, 1981.
[64] Rabinovich, M., Stern, M., and Klein, D. Abstract syntax networks for code

generation and semantic parsing. arXiv preprint arXiv:1704.07535 (2017).
[65] Radford, A.,Wu, J., Child, R., Luan, D., Amodei, D., and Sutskever, I. Language

models are unsupervised multitask learners. OpenAI Blog 1, 8 (2019), 9.
[66] Rayner, K., and Duffy, S. A. Lexical complexity and fixation times in reading:

Effects of word frequency, verb complexity, and lexical ambiguity. Memory &
cognition 14, 3 (1986), 191–201.

[67] Rfc editor. http://www.rfc-editor.org/.
[68] S. Gueron, A. Langley, Y. L. AES-GCM-SIV: Nonce Misuse-Resistant Authenti-

cated Encryption. RFC 8452, 2019.
[69] SAGE. https://github.com/USC-NSL/sage.
[70] Sidhu, D., and Chung, A. A formal description technique for protocol engineering.

University of Maryland at College Park, 1990.
[71] First sip interoperability test event. https://www.cs.columbia.edu/sip/sipit/1/,

2008.
[72] Sipos, R., Fradkin, D., Moerchen, F., and Wang, Z. Log-based predictive

maintenance. In Proceedings of the 20th ACM SIGKDD international conference on
knowledge discovery and data mining (2014), pp. 1867–1876.

[73] Srivastava, S., Gulwani, S., and Foster, J. S. From program verification to
program synthesis. In Proceedings of the 37th annual ACM SIGPLAN-SIGACT
symposium on Principles of programming languages (2010), pp. 313–326.

[74] Srivastava, S., Labutov, I., and Mitchell, T. Joint concept learning and se-
mantic parsing from natural language explanations. In Proceedings of the 2017
conference on empirical methods in natural language processing (2017), pp. 1527–
1536.

[75] Steedman, M., and Baldridge, J. Combinatory categorial grammar. Non-
Transformational Syntax: Formal and explicit models of grammar (2011), 181–224.

[76] Tcpdump & libpcap public repository. https://www.tcpdump.org/. Accessed:
2020-05-22.

[77] Tellex, S., Kollar, T., Dickerson, S., Walter, M. R., Banerjee, A. G., Teller, S.,
and Roy, N. Understanding natural language commands for robotic navigation
and mobile manipulation. In Twenty-fifth AAAI conference on artificial intelligence
(2011).

[78] Thomson, M. Example Handshake Traces for TLS 1.3. RFC 8448, 2019.
[79] Vaarandi, R. A data clustering algorithm for mining patterns from event logs.

In Proceedings of the 3rd IEEE Workshop on IP Operations & Management (IPOM
2003)(IEEE Cat. No. 03EX764) (2003), IEEE, pp. 119–126.

[80] von Bochmann, G. Methods and tools for the design and validation of proto-
col specifications and implementations. Université de Montréal, Département
d’informatique et de recherche . . . , 1987.

[81] Wang, S. I., Liang, P., and Manning, C. D. Learning language games through
interaction. arXiv preprint arXiv:1606.02447 (2016).

[82] Wang, Z., Qin, Y., Zhou, W., Yan, J., Ye, Q., Neves, L., Liu, Z., and Ren, X. Learn-
ing from explanations with neural execution tree. In International Conference on
Learning Representations (2020).

[83] White, M., and Rajkumar, R. A more precise analysis of punctuation for broad-
coverage surface realization with ccg. In Coling 2008: Proceedings of the workshop
on Grammar Engineering Across Frameworks (2008), pp. 17–24.

[84] Xu, W., Huang, L., Fox, A., Patterson, D., and Jordan, M. I. Detecting large-
scale system problems by mining console logs. In Proceedings of the ACM SIGOPS
22nd symposium on Operating systems principles (2009), pp. 117–132.

[85] Yang, Z., Dai, Z., Yang, Y., Carbonell, J., Salakhutdinov, R. R., and Le, Q. V.
Xlnet: Generalized autoregressive pretraining for language understanding. In
Advances in neural information processing systems (2019), pp. 5754–5764.

[86] Yin, P., and Neubig, G. A syntactic neural model for general-purpose code
generation. arXiv preprint arXiv:1704.01696 (2017).

[87] Yin, P., and Neubig, G. A syntactic neural model for general-purpose code
generation. In Proceedings of the 55th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers) (Vancouver, Canada, July
2017), Association for Computational Linguistics.

[88] Yin, P., Zhou, C., He, J., and Neubig, G. Structvae: Tree-structured latent variable
models for semi-supervised semantic parsing. arXiv preprint arXiv:1806.07832

(2018).
[89] Zhang, S., Ma, X., Duh, K., and Durme, B. V. Amr parsing as sequence-to-graph

transduction. ArXiv abs/1905.08704 (2019).
[90] Zhang, S., Ma, X., Duh, K., and Durme, B. V. Broad-coverage semantic parsing

as transduction. In EMNLP/IJCNLP (2019).

APPENDIX

A ICMP Test Scenario Setup

Destination Unreachable Message. At the router/receiver side,
we assume the router only recognizes three subnets, which are
10.0.1.1/24, 192.168.2.1/24, and 172.64.3.1/24. At the sender side,
we craft the packet with destination IP address not belonging to
any of the three subnets. The receiver reads the packet and calls
the generated function to construct the destination unreachable
message back to the sender.

Time Exceeded Message. At the sender side, we intentionally
generate a packet with the time-to-live field in IP header set to
1, and the destination IP address set to server 1’s address. At the
router side, the router checks the value of time-to-live field and
recognizes the packet cannot reach the destination before the time-
to-live field counts down to zero. The router interface calls the
generated function to construct a time exceed message and sends
it back to the client.

Parameter Problem Message. At the router side, we assume the
router can only handle IP packets in which the type of service value
equals to zero. At the sender side, we modify the sent packet to set
the type of service value to one. The router interface recognizes the
unsupported type of service value and calls the generated function
to construct a parameter problem message back to the client.

Source Quench Message. At the receiver side, we assume one
outbound buffer is full, and therefore there is no space to hold a
new datagram. At the sender side, we generated a packet to server
1. If there is still buffer space for the router to forward the packet
to server 1, the router should push the packet to the outbound
buffer connected to the subnet where server 1 belongs to. Under
this scenario, the router will decide to discard the received packet,
and construct a source quench packet back to the client.

RedirectMessage.At the sender side, the client generated a packet
to an IP address that is within the same subnet, but sent to the router.
The router discovered the next gateway is in the same subnet as the
sender host, and therefore constructs the redirect message to the
client with the redirect gateway address by calling the generated
functions.

Echo and Echo Reply Message. In RFC 792, echo/echo reply are
explained together, but some sentences are merely for echo while
some are only for echo reply. After analysis, sage generates two
different pieces of code. One is specific to the sender side, and the
other is specific to the receiver side. The client calls the generated
function to construct an echo message to the router interface. The
router interface finds it is the destination and constructs an echo
reply message back to the client by calling the receiver code.

Timestamp and Timestamp Reply Message. The sender and
receiver behavior in this scenario is identical to echo/echo reply.
The sender sends a packet by calling the generated function and

http://www.rfc-editor.org/
https://github.com/USC-NSL/sage
https://www.cs.columbia.edu/sip/sipit/1/
https://www.tcpdump.org/

Semi-Automated Protocol Disambiguation and Code Generation SIGCOMM ’21, August 23–28, 2021, Virtual Event, USA

S\NP λ

(S/S)/NP 𝛌 λ

NP

NP/NP
λ

NP/NP
λ

NP S/S
λ

NP/NP
λ

$The

NP

$ModalVerb

(S\NP)/(S\NP)
λ

(S\NP)/NP
λ λ𝐱 NP

NP NP

S/S λ

S\NP λ

S

S

S

For

$For

computing

$Compute

the

$The

checksum

“checksum” $Punctuate

, the checksum

“checksum”
should be

$Is

zero.

“0”

Figure 7: Constructing one logical form of sentence “For computing the checksum, the checksum should be zero” with CCG.

the receiver matches the ICMP type and replies to packets with
the generated function. The difference lies in the packet generated
by the function. The timestamp or timestamp reply message do
not have datagram data, but they have three different timestamp
fields in its header. The generated function correctly separates three
different timestamps with respect to the roles and computation time.

Information Request and Reply Message. The sender and re-
ceiver behavior of this scenario is the same as echo/echo reply and
timestamp/timestamp reply. Similar to timestamp/timestamp reply,
the differences lie in the generated packets that do not have data;
the field values are different.

Interoperation with existing tools. To test whether a sage-
generated ICMP implementation interoperates with tools like ping
and traceroute, we integrated our static framework code and
the sage-generated code into a Mininet-based framework used
for the course described in §2. With this framework, we verified,
with four Linux commands (testing echo, destination unreachable,
time exceeded, and traceroute behavior) shown in Table 12, that a
sage-generated receiver or router correctly processes echo request
packets sent and received by built-in ping and traceroute.

Test Command Purpose

client ping -c 10 10.0.1.1 Test echo msg
client ping -c 10 192.168.3.1 Test dest unreachable msg
client ping -c 10 -t 1 192.168.2.2 Test time exceeded msg
client traceroute -I 10.0.1.1 Test traceroute

Table 12: ICMP test commands used in project environment.

B CCG Parsing Example

We show amore complex example, of deriving one final logical form
from the sentence: “For computing the checksum, the checksum
should be zero.” in Figure 7. First, each word in the sentence is
mapped to its lexical entries (e.g., checksum → NP: "checksum").
Multiple lexical entries may be available for one word; in this case
we make multiple attempts to parse the whole sentence with each
entry. After this step, the CCG parsing algorithm automatically
applies combination rules and derives final logical forms for the
whole sentence.

	Abstract
	1 Introduction
	2 Background and Overview
	2.1 Discussion of ICMP Implementations
	2.2 Approach
	2.3 sage Overview

	3 Semantic Parsing
	4 Disambiguation
	4.1 Why Ambiguities Arise
	4.2 Winnowing Ambiguous Logical Forms

	5 Code Generation
	5.1 Challenges
	5.2 Logical Forms to Code

	6 Evaluation
	6.1 Methodology
	6.2 End-to-end Evaluation
	6.3 Exploring Generality: IGMP and NTP
	6.4 Exploring Generality: BFD
	6.5 Disambiguation

	7 sage Limitations
	8 Related Work
	9 Conclusions
	References
	A ICMP Test Scenario Setup
	B CCG Parsing Example

