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ABSTRACT
Rural areas are home to 45% of the world’s population and are ne-
glected in the design and deployment of broadband Internet access.
Beyond establishing connectivity, the planning and design of net-
works in these areas is often challenging because the complexity of
planning such networks often exceeds the knowledge and practical
expertise of individuals – even individuals that are experts in this
field. Yet, proper planning and efficient network designs are critical
to the long term viability and scalability of such networks. In this
paper, we highlight the challenges that lone operators who lack
sufficient technical support and tools must face when designing and
deploying their networks. We then present a network planning tool,
Zyxt, that aims to help individuals in planning rural wireless net-
works. We describe the design and implementation of our prototype
and evaluate it against synthetic and real-world planning problems.
Our evaluation demonstrates that Zyxt is able to solve real-world
network planning problems using relatively modest computing
resources within a few hours.
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1 INTRODUCTION
Over a decade ago our community set out on a mission to identify
and eliminate barriers to the universal adoption of Internet access.
As is still true today, we knew that Internet access is as much about
economics as it is about technology. Therefore, despite ISPs being
unwilling to build expensive infrastructure to serve regions with

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
COMPASS ’18, June 20–22, 2018, Menlo Park and San Jose, CA, USA
© 2018 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-5816-3/18/06.
https://doi.org/10.1145/3209811.3209874

low user densities, we were certain of our inevitable success so
long as cheaper, faster, longer range, and more rugged wireless
equipment continued to become available [46].

Today, commodity wireless equipment is cheap, Internet is a
basic human right, and major companies have joined the effort.
However, despite buzz about high-cost, high-complexity, high-tech
solutions to the problem, we have made only slow progress toward
universal access. Near highly-connected cities there are communi-
ties connecting via dialup and their connections are getting slower
– now crawling along at 9600 bps. Such neglected rural areas are
home to 45% of the world’s population.

In this paper we explore how to meet the challenges faced by
the lone operator in the vast unconnected frontier. Building basic
infrastructure in this frontier, even in wealthy nations, is an enor-
mous endeavor. If universal connectivity is to be achieved, it will
be not through the few, large operators connecting the last billions.
Instead, we believe connectivity will flow through the thousands
wireless ISP (WISP) operators, often one-person outfits, who have
a stake in bringing access to their own communities.

The key challenge for these operators is not one of hardware –
commodity hardware is widely available and easy to set up – nor
is it of management, as there are a number of free systems to aid
them once up and running. Instead, it is a mismatch between the
skills of to-be operators and the task at hand: planning a WISP
network often requires a combination of extensive knowledge and
practical expertise seldom found in one individual. As we discuss
in Section 2, even for our expert team it was difficult to build such
a network quickly, at low cost, and with few missteps; for unskilled
lone operators who do not have our resources the difficulty is
far greater.

Traditionally, the task of network planning typically falls to large
carriers (in the case of backbones) and cloud providers (in the case
of datacenters), both of which have the financial and political re-
sources to overcome physical obstacles (e.g. dig trenches, acquire
spectrum, build large towers, buy land). In contrast, WISP operators
must plan and operate within existing constraints and cope with
the complex myriad of network planning tasks. No one task dom-
inates others in importance when planning WISP networks, but
the accumulation of poorly made decisions can easily bring down
a network, leaving users in the dark once again as is the history of
numerous rural operators.

In this paper we motivate the problem by describing one of our
own experiences planning and deploying a rural WISP network;
we highlight the practicalities of building such networks and what
distinguishes them from other types of networks and existing ap-
proaches in the research literature. We then present our design
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and implementation of Zyxt, a semi-automated network planning
tool, and evaluate Zyxt’s components on synthetic problems as well
as holistically on real-world scenarios. We demonstrate that Zyxt
reduces the complex problem of network planning to a tractable
problem that can be completed in essentially real-time while pro-
viding tradeoffs between memory use, error, runtime, and overall
cost of the solution.

2 CASE STUDY: A RURALWISP NETWORK
DEPLOYMENT

To make the challenges of planning WISPs apparent, we present
a brief case study on a network we deployed in a previously-
unconnected region in rural Northern California [18]. Our experi-
ence illustrates some of the problems faced by a team of networking
professionals when designing and deploying a WISP network in-
frastructure. While all networks are unique to their circumstances,
the challenges are broadly similar, as found when we spoke with
many dozens of rural network operators in North America, Asia,
and Africa and given our firsthand knowledge of many of these
networks. Not all of these challenges will be solved by our pro-
posed planning tool, but our aim is to give the reader a sense of
the difficulties faced in WISP design and the operational issues that
should be taken into account.

2.1 Case Study Context
We learned of a region, about 50 km by 20 km, that was without
broadband Internet connectivity. Local users who wanted Inter-
net access either used a small regional dialup Internet provider or
used slow satellite Internet. Figure 1 is a rotated map of the region
populated with data of a set of potential customer sites.

The region had no coaxial infrastructure and poorly-distributed
twisted-pair copper infrastructure, and thus no cable or DSL service.
Cellular coverage was spotty, with no 4G service and unreliable 3G
service; incumbent telcos had expressed no interest in improving
service to the region, and even left backup generators in disrepair,
resulting in frequent outages due to unreliable grid power. Sev-
eral rivers and creeks cross the main road, which flood frequently
cutting off road access. The region as a whole was economically
depressed, including a local tribal community, with about a quar-
ter of households living in poverty; however, there were pockets
of affluence. Over the past decade at least three other operators
have provided service to the region for a time, only to fail due to
poor network planning and infrastructure and other challenges,
resulting in poor network reliability and performance and lead-
ing to eventual business failure. Given this context, our challenge
was this: how do we build a cost-effective, performant network to
provide connectivity to the population depicted in Figure 1?

2.2 Deployment Process
Our deployment team consisted of several engineers and techni-
cians. Our initial task was to identify a source of upstream band-
width. No universal map of this information exists, and large tele-
coms (that are the usual providers of such service) do not publicize
locations of their fiber facilities in such regions. After hearing local
reports of a facility in the region, we contacted a large provider

who, after months of our effort following up with them, confirmed
for us that they would be able to sell us upstream bandwidth.

The lack of wireline infrastructure and the cost of building cell
infrastructure and acquiring spectrum made microwave links (e.g.,
directional WiFi) a natural choice [36]. This hardware is cheap,
low power, and easy to set up. However, such links require line-of-
sight, have distance limitations, and can struggle with reflections,
intermittent obstructions (i.e. severe weather), and is spectrum
constrained.

Our first challenge was to determine how to distribute connec-
tivity from the upstream gateway site. The telecom rejected our
proposal to mount gear at their facility at low cost, leaving us with
no option but to trench fiber from their site to another location
nearby where this could be distributed. An ideal nearby site was a
large, empty hillside near the facility. After another two months of
tracking down and negotiating with the reclusive, elderly owner
of the empty land, we were told that we could use the hill only
for an exorbitant monthly fee. In parallel we considered several
other neighboring sites, all of which were further away and none
of which had any elevation. After the hillside was eliminated from
consideration, we opted to trench fiber further to an alternative,
low-lying location, from which we then had to set up backhaul
links to a more distant hilltop location we secured, which would
serve as a major distribution hub.

The topography of the region – a narrow stretch of land be-
tween ocean and mountains that rise 1,000 m – dictated where we
could place relay sites. Our constraints were further modulated by
additional factors: where we could get power, where line-of-sight
existed, where we had access to sites, and where potential users
were situated. Existing tools only serve to compute line-of-sight
between pairs of nodes, something available in many GIS plan-
ning tools. Since such networks have been built for a number of
years, we expected that existing tools might be capable of doing
semi-automated planning, but we found that the state of the art has
scarcely advanced over the last decade. In each area that we aimed
to expand connectivity, we first spent many weeks using existing
rudimentary planning tools [22] to manually identify multiple loca-
tions in concert that had line-of-sight and were located with good
proximity to user populations. This was ultimately a guess-and-
check approach. Once we had narrowed the list of sites, we then
spent additional time to negotiate with land owners, businesses,
and civic institutions.

The choice of radio frequencies at our sites was also decided
manually and after many considerations. Spectrum contention was
commonplace; despite our heavy use of unlicensed 5 GHz spectrum,
in which there are numerous non-overlapping channels, we were
forced to use other unlicensed bands as well due to contention at
major sites.

After over six months of extensive planning, negotiation, and
rollout efforts, our modest network consisted of about six sites and
provided coverage to perhaps fifty users; it eventually took years
for our network to expand to serve the majority of the region’s
userbase. When unthrottled, many subscribers could receive 30-
60 Mbps symmetric throughput to the Internet with less than 5 ms
latency within our network. At major infrastructure sites we also
deploy batteries and networked power monitors, and power all key
network devices using Power-over-Ethernet (PoE).
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Figure 1: Map of 50 km × 20 kmWISP network region and locations of a subset of (potential) customers

Despite being a skilled and experienced group we encountered
numerous complex issues in planning, deploying, and managing
the network and had to grapple with these issues with few tools
at our disposal. As a result, while we were careful to weigh the
decisions we made in designing and deploying the network, many
decisions were still ad-hoc, and some decisions we made turned
out to be mistakes that took time and money to undo.

3 BACKGROUND AND RELATEDWORK
3.1 Rural Networks
Networking in developing and rural regions is a topic that has
attracted attention over the last decade [7, 9, 32, 44]. This focus
has intensified in recent years and researchers have recognized
that the challenges presented in these networking regimes are
substantially different and require different solutions [3, 10–13,
19, 20, 28, 36, 40, 42, 43, 47, 48, 56]. The various challenges and the
approaches described in this body of literature include: connectivity
establishment [19, 36, 40], high hardware cost, unreliable or low
quality power [49], poor performance [10, 11, 42], and difficulties
in operational management [18]. While there has been work on
protocols and techniques for faster and more reliable networks,
research often does not extend far enough to keep such networks
alive after the research is done, as the operational challenges in
such networks are quite high [49].

The global rural network coverage has not dramatically increased
yet, but we have made progress as many of the above problems
now have known solutions that are being incorporated into even
mainstream systems [1, 21, 31, 34, 52]. The turning point for rural
networking hardware was the growth of cheap, reliable, and fast
commodity wireless hardware (built upon SoC boards from Atheros
and others, which were mass produced for the 802.11 home router
market) which started to become widely available around 2008 from
vendors such as Ubiquiti [52] andMikrotik [31]. More recently large
companies such as Google and Facebook have taken an interest in
the problem space. New hardware platforms are being developed to
deliver middle-mile connectivity [5, 30]. However, the design and
deployment of last-mile networks remains an unsolved problem.

3.2 Conventional Network Planning
Historically, designing and managing networks has not been of
major research interest to the networking community prior to the
popularization of software-defined networking (SDN). Before SDN,

the tedious planning and management of wired networks involved
a myriad of decisions regarding equipment, configuration poli-
cies, and management software. These laborious manual processes
slowed innovation, increased complexity, and inflated both the cap-
ital and the operational costs of running a network [29]. Today’s
last-mile networks face a similar bottleneck.

The design and management challenges in rural wireless net-
works imposed by physical constraints are largely unexplored in
the existing research literature. Instead, much of the previous work
on wireless networking concentrates on wireless ad-hoc, mesh, and
sensor networks [8, 41, 53, 55]. Within wireless, variations of topol-
ogy planning considered hardware factors such as transmission
power and directional antenna [24, 41]. These types of networks
are nearly the complete opposite of rural wireless networks. Rural
wireless networks, unlike ad-hoc networks, require complex plan-
ning to ensure high performance, robustness, and cost efficiency.
As such, network operators must invest significant effort in plan-
ning, or deal with the consequences later. There are also numerous
patents on planning cellular networks [2]. Several approaches have
been proposed in cellular network planning for the placement of
base stations (e.g. Andrews et al. [4]), but these generally focus on
spectrum and interference rather than physical topography. The
closest work to ours is an algorithm by Sen and Raman that at-
tempts to minimize the overall network cost by considering tower
height, antenna type, and transmit power [45].

Nearly all networking planning research focuses on network
complexity problems internal to the network (e.g. wiring, cooling,
protocols, management, etc.); networking researchers and engi-
neers are typically insulated from the many external planning prob-
lems (e.g. facility siting, tower siting, fiber path planning, power
management, etc.) that other well-resourced teams are responsi-
ble for handling in most large organizations (e.g. in datacenter
networks, enterprise wireless networks, and regional wireline ISP
networks). In rural WISP networks, when all of these problems are
borne by a single individual or a very small team, the task becomes
overwhelming. Furthermore, WISPs do not have the financial or
political capital to mitigate the sources of complexity and therefore
must address them directly.

3.3 WISP Network Planning
In contrast to traditionally studied networks, a typical WISP net-
work is deployed across a large and topographically diverse area
(e.g. 50 km × 20 km, or 1,000 sqkm). In such an area, considering,
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crudely, that sites are typically parcels of rural land on the order
of a couple of hectares each, there are about 50,000 potential sites.
Even if we immediately aggregate or discard as non-viable 80%
of these potential sites using various heuristics, some 10,000 pos-
sible site options remain. At each site, the number of constraints
to be considered for placement of devices (which are directional,
not omnidirectional) is on the order of twenty, including power
availability, tree cover, slope of terrain, orientation, type of radio,
type of antenna, type of tower or mast, type of hardware, and more.

Across these potential sites, the network only needs on the order
of a dozen sites to serve the area, and such sites must be selected
jointly, as the best set of sites (and their configurations) out of the
thousands of options. This selection of the best small set from a large
set of options results in combinatorial explosion, yielding many
orders of magnitude greater design complexity than in other types
of network design. It is the inability to cope with the combinatorics
of the problem that frequently pushes network operators to make
many ad-hoc design decisions that result in networks that are
unreliable and slow – and thus expensive and short-lived.

When deploying their networks today, rural operators use a
mix of incomplete planning tools. Some tools build upon terrain
data to estimate line-of-sight between two locations, enabling an
operator to perform rudimentary topography planning for relay
sites [22], other tools [50, 54] provide tools to manually plan, un-
derstand, and deploy wireless networks. Only a few alternative
planning models have also been proposed. IncrEase [6] is a plan-
ning paradigm that incrementally introduces sets of additional
transmission sites. In [25], the authors describe a mathematical
model for automated network planning that considers economic
and technical constraints. Other systems, such as TowerDB and
Celerate, attempt to simplify network management by juxtapos-
ing geographic locations of devices with network information (e.g.
IP-address, frequency, and SSID) [18, 51].

4 ZYXT SYSTEM OVERVIEW
Our goal is to enable the semi-automated design of a WISP network
through the use of Zyxt, our network design system. We envision
a would-be network operator (who may or may not have any net-
work design or management expertise) articulating the geographic
locations to be served, policy aims, and other limitations or criteria,
and being given a fully-specified network design by Zyxt, including
the relay/backhaul locations and the network hardware to deploy,
device configurations including spectrum allocation, and physical
deployment specifics including elevation and power considerations.
Such a design could then be improved through iteration with the
design system – for example, as land use is negotiated – and a final
design could be used as a blueprint for deployment.

To enable this, Zyxt must translate constraints along with user-
specified policies into a cohesive representation that then enables
the construction of a network design by a solver. This result is
then post-processed to account for other considerations not easily
incorporated into the solver representation such as the profitability
of providing service to a customer. Eventually, the design generated
by the system’s solver must be re-represented to enable the operator
to refine and converge upon a network design. At the core of this
iterative design process is a pre-processing step that combines the
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Figure 2: Zyxt system overview

operator’s design specifications and physical models to produce
a problem representation for a solver to then produce a network
design. Figure 2 shows the Zyxt system overview. In this paper
we focus on the design, implementation, and evaluation of the
pre-processing and solver aspects of Zyxt.

4.1 Pre-processing
The main contributing factor of the site dependencies is site visi-
bility among sites. In this context, we distinguish three different
types of sites: customer sites (sinks), potential intermediate towers
(relays) and backhaul sites (sources). Given that sites are connected
through point-to-point wireless communication equipment, the
visibility between locations is largely determined by the elevation
of the terrain. Within the region under consideration, we place the
sinks and sources and must then determine the set of intermediate
tower locations required to interconnect the customer sites. Inter-
mediate tower locations can be at any location within the region
including customer sites.

To determine site visiblity, we can use the elevation data to com-
pute the set of viewsheds of all locations within the region. These
viewsheds describe the visibility (line-of-sight) at each location and
can be used to produce a visibility graph that encodes the visibility
between all location pairs. This allows us to formulate our design
problem as a classical graph theory problem, where vertices rep-
resent the source, sink, or relay locations and edges represent the
connectivity (line-of-sight) between the vertices. There is an exten-
sive body of research on graph theory and numerous algorithms
exist that tackle similar design problems (e.g. [23, 35]).

We assume an undirected graphG = (V ,E) with non-negative
edge weights c and a subset of vertices S ⊆ V that should be
connected using the least amount of remaining vertices, i.e. G that
spans S . In order to map our problem to a conventional graph
theory problem, each of our potential intermediate tower locations,
customer locations and backhaul sites are v ∈ V and the visibility
among the locations are e ∈ E. Further, the edges e that connect
the vertices v have assigned edge weights that correspond to the
equipment cost of the link. The equipment costs and flow capacities
are calculated based on a predefined set of hardware that can be
used to cover different transmission ranges and hence correspond
to the physical length of the edge. Source and sink vertices are
associated with supplies and demands that represent the provided
bandwidth to the network and desired bandwidth, respectively.



Zyxt: A Network Planning Tool for Rural Wireless ISPs COMPASS ’18, June 20–22, 2018, Menlo Park and San Jose, CA, USA

Phase 1 Phase 2

A B C D E F
Cost: $900 Cost: $700 Cost: $650 Cost: $650 Cost: $550 Cost: $450

Figure 3: Simplified steps of MCF-RR phase one and two. The blue diamond denotes the source, the red crosses the customer
locations, and the dashed edges are annotated with the passed flow and the hardware bandwidth that is chosen after eachMCF
iteration. Intermediate towers are omitted for clarity.

4.2 Solving
The network planning problem naturally lends itself to a graph
optimization representation of connecting the vertices with the
minimum total cost edges that provide sufficient flow capacity to
satisfy the customers. This problem is a special case of the well-
known Fixed-Charge Network Flow (FCNF) problem, which has
applications in transportation and communication [17]. The FCNF
problem is NP-Hard and could be directly given to a generic solver.
However, as we demonstrate, using an off-the-shelf solver is infea-
sible for our large problems due to memory bottlenecks and long
run times.

Given that multiple aspects of the design problem are NP-Hard,
such as site selection and spectrum allocation [37], the underlying
constraint datasets are rife with error, and the policies expressed
by the operator are ambiguous, there is limited room for or value
in developing an “optimal” algorithm. Thus, we do not attempt to
optimally solve this problem from a theoretical perspective. Instead,
we believe it to be sufficient to develop a practical system that is
capable of producing a result that is substantially better than the
status quo today because the resulting decrease in life-cycle cost
over the course of the network’s design, deployment, and manage-
ment will make all the difference for the viability and longevity of
WISP networks.

We initially considered several specific algorithms that do not
require the use of a general solver that might be suitable starting
points to our problem (e.g. Minimum Cost Flow, Steiner Tree, etc.),
but these problem formulations do not capture the relevant con-
straints or objectives of FCNF. Minimum Cost Flow (MCF) bases its
optimization on unit costs whereas our costs are fixed if the edge
is included (i.e. purchasing a piece of equipment costs the same
regardless of the utilization). The Steiner tree algorithm cannot take
into account the supplies and demands of the sources and sinks. We
initially attempted to post-process the results of these algorithms,
but we found that this approach generally yielded network designs
that were 2-3 times more expensive than the optimal solution even
on small problems. We omit a more extensive comparison due to
space constraints and instead focus on comparing solving FCNF
using a generic solver against our approach of augmenting MCF
with iterative randomized rounding (MCF-RR).

4.2.1 Fixed-Charge Network Flow (FCNF). The Fixed-Charge
Network Flow (FCNF) formulation is often used to solve transporta-
tion and communication network problems in which a flow has

to be distributed from supply nodes through intermediate nodes
to demand nodes. For each node, the demand is positive for de-
mand nodes (sinks), negative for supply nodes (sources), and zero
for intermediate nodes (relays). The nodes are connected by edges
which have a capacity, a unit cost, and a fixed cost. The goal of
FCNF is to decide how to ship the demands from the supply nodes
to the demand nodes so that the shipping costs are minimized.
We map our problem to FCNF as follows: locations are mapped
to vertices, visibility between two locations is mapped to an edge,
the bandwidths of potential links are mapped to the capacity of
the edges, the hardware cost of the links are mapped to the fixed
shipping costs, and the desired and offered bandwidth at the node
locations are mapped to the demands and supplies of the vertices,
respectively.

4.2.2 Minimum Cost Flow with Iterative Randomized Rounding
(MCF-RR). In order to overcome the aforementioned unit cost limi-
tations of theMCF algorithm,we approximate our desired algorithm
by combining an iterative randomized rounding technique [39] with
MCF, which we call MCF-RR.

MCF-RR runs in two phases as illustrated by an example in
Figure 3: In the first phase, we run MCF and “keep” edges proba-
bilistically based on their capacity utilization for the next iteration
(steps A - C). For example, if the capacity of an edge is 100 Mbps
and its utilization is 15 Mbps, then the edge is kept with a proba-
bility of 15%. If the edge is kept, its unit cost is set to zero for the
next iteration to force MCF to use this edge. Intuitively, keeping
edges in this manner causes MCF to push more flow through it in
the next iteration (thus taking into consideration the fixed cost of
adding edges rather than solely focusing on unit cost). Edges that
were not kept in an iteration could potentially be added again in
the next iteration. This procedure is repeated until all flows are
distributed only over kept edges and the total unit cost converges
to zero (step D).

Since the solution of phase one is heavily determined by the
probabilistic decisions that are made in the first iterations, we repeat
phase onemultiple timeswith different random seeds.1 The solution
with the cheapest total hardware cost is selected as the input for
phase two.

In the second phase of MCF-RR, the algorithm tries to further
optimize the solution by iteratively backtracking to attempt to
remove edges. We first remove edges (one edge at a time) that
1In practice, we found that around 10 random seeds were sufficient to find a solution
that is a good starting point for phase two.
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connect only one customer site from the solution and re-run MCF
(e.g. edge a in step D). If MCF brings the same edge back, then
we assume that the flow of this edge cannot be easily distributed
elsewhere. If the flow of this edge is redistributed to an existing
edge (e.g. edge b and f in step E), then the solver compares the
total cost of the new solution with the total cost of the previous
solution. If the cost of the new solution is lower, the new solution
is taken as input to the next iteration. After removing all edges
that connect one customer site, we attempt to remove edges that
connect two, three, etc. customer sites (e.g. edge b in step E).2 If the
total hardware cost of a solution at any iteration is lower than in the
previous iteration, then phase two is restarted from the beginning.
The solver terminates phase two after all edges have been removed
at least once (step F).

5 IMPLEMENTATION
As a fundamental input for the solver, we use elevation data from the
latest SRTM dataset [14] and post-process it using the GRASS GIS
library [16]. Based on the locations of the customer and backhaul
sites provided by the user, we use several GRASS GIS routines to
access, modify and re-scale the elevation data to make them suitable
for our model. This includes patching multiple SRTM map tiles
together, cropping the maps to the region of interest, re-sampling
the raw data to lower the memory footprint and model complexity,
and also placing possible intermediate tower locations on the map.

5.1 Visibility Calculation
To obtain the visibility graph, we calculate the visibility from every
location to every other location. The visibility between locations is
determined by two physical properties: the geographical elevation
and the mounting height of the equipment to be placed at that loca-
tion. While the geographical elevation is defined by the underlying
elevation map of the terrain, the mounting height of the equipment
can be set by adding the mounting height to the elevations of the
pair of locations during the visibility calculation. Two locations
are visible to each other if all elevations along the path between
the locations are lower than the line-of-sight between the two
locations (including mounting height). By introducing mounting
heights to both locations, the visibility between the locations can
be improved as the line-of-sight could see over obstacles between
the two locations.

Depending on the resolution of the elevation map, the total num-
ber of viewshed calculations can quickly become very large. Given
a map size of n locations, n2 −n viewshed calculations are required
to obtain a full visibility network of all locations considered in
the map. When assuming a symmetric visibility of location pairs,
i.e. location A can see location B and vice versa, the number of
viewshed calculations reduces to n2−n

2 . Due to this large number
and since the viewshed calculation is an processing intensive task
for all points on the map, we implemented the viewshed algorithm
in CUDA [33]. As the CUDA architecture allows a calculation of
multiple viewsheds in parallel, i.e. we calculate each location’s visi-
bility in its own thread, the execution time is significantly reduced.

2We order the edge removal in order of ascending flow capacity. Experimentally, we
found that randomly ordering candidate edges for removal converges approximately
twice as quickly, but increases the total network cost by 5-10%.

Hardware Bandwidth Range Cost
(Mbps) (km) ($)

airFiber 5 1200 100 1998
airFiber 2X 500 200 1056

NanoBeam M5-16 150 10 134
PowerBeam M2-400 150 20 158
PowerBeam M5-400 150 25 190
PowerBeam M5-620 150 30 398
PowerBeam 5AC-300 450 20 198
PowerBeam 5AC-620 450 30 458
NanoStation locoM2 150 5 98

Table 1: Equipment list

For example, given a map with 1500 elevation points, the CUDA
viewshed implementation is completed within one second using
a Quadro M4000 graphics card with 1664 cores, whereas it would
take several minutes when done without CUDA. The viewsheds of
all locations are stored in binary as an adjacency matrix.

5.2 Solver Algorithms
5.2.1 FCNF. We use a Mixed Integer Programming (MIP) repre-

sentation of the algorithm to solve the FCNF formulation. We use
CPLEX [26], an off-the-shelf generic solver, to create equations for
the MIP model.

Formally, a FCNF network is given by G = (V ,E) where the
demand of each vertex v ∈ V is dv , the capacity of each edge e ∈ E
isue , the per-unit cost of an edge is ce , and the fixed cost of an edge
is fe . Further, xe is the flow through an edge and ye is a binary
variable indicating if a flow is passed through an edge (ye = 1), or
ye = 0 otherwise. The FCNF problem can be formulated as follows:

min
∑
e ∈E

cexe +
∑
e ∈E

feye (1)

s. t.
∑

e ∈E(V ,v)
xe −

∑
e ∈E(v,V )

xe = dv v ∈ V (2)

0 ≤ xe ≤ ueye e ∈ E (3)

ye ∈ {0, 1} e ∈ E (4)

5.2.2 MCF-RR. We implement MCF-RR based on the Min Cost
Flow implementation in the Google OR-tools C++ open source li-
brary [15]. To assign the unit costs of the edges we base the unit cost
on the cost-over-transmission-range of equipment pairs. However,
since equipment does not exist for all possible link distances, we
approximate the cost-over-transmission-range by fitting a curve
to the transmission range vs cost graph (Figure 4) of the set of
available equipment. Table 1 shows the equipment that we consider
in this paper along with their costs, which represent the cost of a
pair of devices.3 We initially assign the capacity of each edge in
our graph to infinity. By setting cost and capacity in this manner,
we decouple capacity from hardware cost and assign the actual
hardware costs and capacity after iterations of MCF based on the
flow through each edge.
3We obtained these costs from [52] in September, 2016.
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Figure 4: Hardware cost over transmission range

6 MEMORY BOTTLENECKS
Our network planning problem is first represented and stored in
memory as a visibility graph and then within a solver in the solver’s
internal representation. The large size of these problems and their
associated representations can cause memory to be a major bottle-
neck. In this section we consider the two main memory bottlenecks
and show that our MCF-RR implementation can scale to problems
that are two orders of magnitude larger than solving FCNF using
CPLEX. We then introduce three sampling heuristics that are ap-
plied during pre-processing that allows us to solve larger problem
sizes and briefly compare them.

6.1 Visibility Graph
The size of the visiblity graph is constrained by the memory avail-
able on the host machine. The raw elevation data that we had access
to, at its maximum resolution, has a resolution of ∼30 m. Thus, the
total map resolution can quickly become very large if the region
under consideration is large. For example, a 100 sqkm map results
in ∼135,000 elevation points. Given r elevation points on the map,
the memory required by our binary adjacency matrix is r2/8. For
maps that do not fit into the memory of the host machine, we
must re-scale the map to fit into the memory. A “nearest neighbor”
sampling method (supplied by GRASS GIS [16]) may be applied to
re-scale the map to the desired size. However, such re-scaling will
introduce error to the viewshed calculations due to the averaging
of multiple elevation points to one.

We evaluate the error of the visibility graph that is introduced
by re-scaling the map resolution. Using our 64 GB machine, we
emulated machines with smaller memory so that we were able
to calculate the viewsheds of the maps that were not re-scaled,
i.e. using the full resolution of the map with no error. The con-
nectivity error is defined for every location pair in the re-scaled
map, where we compare its visibility with the visibility of the exact
same location pair (latitude and longitude) in the full resolution
map. Whenever the connectivity (visible or not visible) differs, it is
counted as an error.

Figure 5 shows the relative connectivity error over different map
sizes for maps of low and high elevation variance. We picked two
8 km by 8 km regions in rural California with different topology
properties, i.e. a flat area with little elevation and a mountainous
area with highly varying elevations. The native resolution of these
elevation maps was ∼30 m. We observe that the connectivity error
for a map with little elevation variation is very low and re-scaling of

0 100 200 300 400 500
Map size (sqkm)

0

5

10

15

20

25

30

C
on

ne
ct

iv
it

y
er

ro
r

(%
)

8 GB - Mountain Map
16 GB - Mountain Map
32 GB - Mountain Map

8 GB - Flat Map
16 GB - Flat Map
32 GB - Flat Map

Figure 5: Connectivity error over map size

Map Resolution Edges Customer Memory Memory
(# of Vertices) Sites (FCNF) (MCF-RR)
20 × 20 (400) 76,519 80 835 MB 5 MB
40 × 40 (1,600) 1,125,897 320 11,842 MB 113 MB
60 × 60 (3,600) 5,637,153 720 57,372 MB 552 MB
80 × 80 (6,400) 17,955,115 1,280 >64,000 MB 1,642 MB

Table 2: Memory footprint of FCNF and MCF-RR

themap does not introduce a large connectivity error. However, on a
map with high elevation variation, the connectivity error increases
whenmapsmust be downscaled to fit into memory. Re-scaling intro-
duces significant error on non-trivial terrain and should be avoided
because it can lead to network topologies that are impossible to
connect in reality.

6.2 FCNF & MCF-RR
To run a solver for FCNF or MCF-RR, the problem representation
must fit in memory. We compare the memory footprint of FCNF
and MCF-RR using the mountainous region from the previous ex-
periment. We re-scale the region down to four scenarios of differ-
ent sizes, each with evenly distributed elevation points. We then
randomly distribute customer sites within each scenario. In these
microbenchmarks we ignore error introduced by re-scaling to focus
on the memory footprint of the two algorithms. Table 2 shows
the memory required by FCNF and MCF-RR to solve problems of
varying number of vertices, edges, and number of customer sites.

We can observe that even a low resolution scenario of 80 × 80
points can completely occupy 64 GB of memory in FNCF. At the
native resolution of our elevation data, this corresponds to only a
small 2.4 km × 2.4 km region.

The large memory footprint in the CPLEX solver is due to the
large system of equations for the vertices and edges in the visibility
network. According to the CPLEX documentation [27] and based
on extensive benchmarking experiments, we identified that the
memory allocation of the MIP model is roughly proportional to
the number of edges and can be approximated by the following
equation:

Memory (MB) ≈ (2 × # of edges + # of vertices) × K (5)

where K is dependent on the number of threads in use by CPLEX.
We experimentally determined that for our 8-threaded machine,
K ≈ 0.005. In contrast, the memory MCF-RR requires less than 1%
of the memory that the FCNF formulation requires in CPLEX.
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6.3 Distributed Parallel Optimization
Based on our benchmarks, a natural question is whether the CPLEX
memory bottleneckmay bemitigated using a distributed solver. The
CPLEX implementation also allows solving a MIP in a distributed
environment. We setup a distributed CPLEX environment with 1
powerful master node (Intel Xeon CPU @ 3.50GHz, 64 GB RAM)
and 8 worker nodes (Intel Xeon CPU @ 3.00GHz, 16 GB RAM). We
conducted a number of the experiments with the goal of being able
to execute scenarios that exceeded the memory bottleneck on a
single machine. However, during these experiments, we found that
while most scenarios were solved more quickly when distributed,
the memory bottleneck remains at the master node.

6.4 Pre-processing Sampling Heuristics
As described in the previous section, the number of potential inter-
mediate tower locations in the visibility network depends on the
map resolution. The number of edges generally increases signifi-
cantly with each additional vertex; in the worst case, each additional
vertex, n, adds n − 1 additional edges to the model. Each additional
vertex and edge that is added to the model increases the solving
time and also the memory footprint. From Equation 5, a large num-
ber of edges quickly consumes main memory in CPLEX and as we
show later, also significantly increases the solving time. To reduce
the model complexity we introduce a few heuristics to remove a
large number of vertices (and consequently the number of edges)
from the visibility graph.

If we consider scenarios where the map resolution is high and
neighboring raster points are in close proximity and elevation, in-
tuitively, many of these locations would have roughly the same
visibility and would likely be unnecessarily redundant. Following
this observation, we would ideally like to remove a large percentage
of vertices to sparsify the visibility graph. It is important to note
that unlike re-scaling, this removal process does not introduce any
connectivity error to the result from the solver since the visibility
between the locations are still calculated at their native resolution.
However, vertex removal effectively removes potential tower loca-
tions from consideration and can drastically worsen the output if
important locations are removed from consideration.

• Random Removal: This heuristic uniformly removes random
locations from consideration.

• Elevation-based Removal: This heuristic takes both elevation
and connectivity properties of the vertices into account. The
map is first divided into buckets of contiguous points that
have similar elevation (e.g. an elevation step size of 100 m).
Then, for each bucket the k points that collectively have the
greatest visibility across the entire map are kept, where k is
defined by the desired number of points to keep.

• Cluster-based Removal: Similar to the elevation-based re-
moval, this heuristic divides the map into buckets of fixed
elevation intervals. To obtain a better distribution of the k
selected points within each bucket, each bucket is further
divided into clusters based on spatial clustering and then k
points are selected from each cluster who’s union has the
greatest visibility to parent buckets (i.e. buckets with higher
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Figure 6: Coverage and Connectivity comparison of the
three vertex removal techniques

elevation). Ties are broken by the k points with the greatest
visibility across the rest of the map.

We introduce two metrics to evaluate the properties of the visi-
bility graph after applying our vertex removal heuristics:

• Coverage: The percentage of original vertex locations that
can still be seen from at least one of the remaining vertices
after vertex removal. This metric is meant to ensure that
potential customer sites located anywhere on the map will
be visible by at least one tower.

• Connectivity: The percentage of vertices after vertex removal
that are reachable from every other vertex. This metric cap-
tures the idea that it is possible to connect all vertices being
considered into a single network.

Figure 6 shows the coverage and vertex connectivity of the three
vertex removal techniques on the same 8 km by 8 km low and high
elevation variance regions we used in our previous experiment.
Since the map size is very small compared to the transmission range
of state-of-the-art equipment, we artificially limit the maximum
edge length of all edges to 300 m. We observe from both figures
that the coverage and connectivity does not significantly degrade
until 98% of the vertices are removed. When 99% of the vertices
are removed, the coverage is still above 95%, but the connectivity
significantly decreases. This means, that up to 98% of the vertices
can be safely removed without degrading the overall connectivity
properties of the visibility graph or introducing any artificial lack
of coverage or connectivity. Note that these two metrics do not
account for potential increases in final network cost due to highly
desirable site locations being removed from consideration.
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Map Resolution
(# of Vertices) Edges Customer

Sites

Solving Solving
Time Time
(FCNF) (MCF-RR)

20 × 20 (400) 76,519 20 10 s 9 s
80 17 s 77 s

40 × 40 (1,600) 1,125,897 20 305 s 162 s
320 663 s 880 s

60 × 60 (3,600) 5,637,153 20 2,205 s 690 s
720 9,696 s 8,577 s

80 × 80 (6,400) 17,955,115 20 NA 2,552 s
1,280 NA >86,400 s

Table 3: Solving time of FCNF and MCF-RR

7 SOLVING TIME
Other than memory, the other major performance bottleneck of
solving FCNF using CPLEX is its long running time. We conduct
several microbenchmarks using the same set of small problems
from the previous section to compare the solving time of FCNF and
MCF-RR. For each scenario, we also vary the number of customers.

Table 3 shows a comparison of the solving time for FCNF as
compared to MCF-RR. We observe that both algorithms take longer
to solve larger problems. The number of vertices under considera-
tion, visibility edges, and customer sites all contribute to the size
of the problem. Overall, as the problem size increases, FCNF grows
more quickly than MCF-RR. In the 6,400 vertex scenario, FCNF was
unable to run due to insufficient memory (see Table 2). We also note
that the solving time of MCF-RR is significantly larger for models
with more customer sites because all possibilities of redistributing
flow must be considered in phase two of our algorithm. This is a
potential area for future improvement.

7.1 FCNF: Feasible Solutions
Experimentally, we observed that the CPLEX solver often finds a
feasible solution that is close to the optimal solution after a few
iterations. CPLEX tries to prove the optimality of the feasible so-
lution, but this takes much longer than finding a feasible solution.
Through a wide range of experiments we also found that in 80%
of the cases, a feasible solution that equals the optimal solution
was found after four iterations and in 99% of the cases after five
iterations – typically in scenarios with a small number of customer
sites. Simply accepting a feasible solution after five iterations con-
siderably reduces the solving time without a substantial loss in the
optimality of the result. The time it takes for CPLEX to produce
good feasible solutions varies depending on problem size from a
few minutes to over 24 hours.

8 EVALUATION
We evaluated MCF-RR on a variety of synthetic and real-world
scenarios and compared our results against FCNF and man-made
network designs where possible. Table 4 summarizes the properties
of these seven scenarios. For comparison we include estimates of
the number of resulting edges and the memory required for the
native elevation data resolution. In these evaluations we use the
equipment in Table 1.

Scenario Map Size Map Resolution Estimated Customer
(sqkm) (# of Vertices) Edges Sites

Map A 400 0.58M 1.7*1011 30
Map B 400 0.58M 1.7*1011 30
Map C 400 0.58M 1.7*1011 30
Map D 400 0.58M 1.7*1011 30
Map E 400 0.58M 1.7*1011 30
Medium 2,530 2.8M 3.9*1012 18
Large 43,000 47.7M 1.1*1015 1,200

Table 4: Estimated scenario dimensions and required mem-
ory at the native map resolution
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(e) Map E

Figure 7: Pictorial sketches of the five synthetic scenar-
ios. The green shapes represent mountainous areas, the red
shaded areas contain the customer sites, and the blue dia-
mond is the source.
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Figure 8: Solving times where FCNF produce feasible solu-
tions whose costs are within 5% of MCF-RR

8.1 Synthetic Scenarios
We created five 20 km × 20 km synthetic scenarios with distinct
topographic features to produce what we considered interesting
planning requirements. Figure 7 includes pictorial representations
of the five synthetic scenarios: Map A contains of a ridge that
separates the source from the customer sites; Map B has the same
terrain as Map A, but the source and customer sites are randomly
distributed across the map; Map C is a mountainous map with
high elevation variation (similar to the map described in Section 6);
Map D includes a mountain that rises 1.7 km in the center of the
map between the source and customer sites; Map E is a relatively flat
map that contains multiple smaller terrain features. Each scenario
consists of one source and 30 customer sites each with 5 Mbps
bandwidth demand. For each scenario we apply the cluster-based
vertex removal heuristic in the pre-processing phase to remove
99.5% of the vertices.

Figure 8 compares the solving times of FCNF andMCF-RR for the
five synthetic scenarios. Since FCNF could not produce an optimal
solution after 12 hours, we show the solving times of FCNF when
it finds a feasible solution that has a cost within 5% of the MCF-RR
solution. Except scenario D, we observe that MCF-RR solves the
problems significantly faster than FCNF. In scenario B, FCNF was
not able to find a feasible solution with similar cost to MCF-RR
after 12 hours.
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(a) FCNF (12 h, $3,230) (b) MCF-RR (10 min, $3,414)

Figure 9: Medium real-world scenario solutions

8.2 Real-world Scenarios
Our two real-world scenarios are regions in rural California where
actual WISP networks have been deployed. We have the customer
site locations for these two scenarios. For the Medium scenario we
do not have the actual network topology or overall cost available
so we can only compare MCF-RR with FCNF. The Large scenario is
from the WISP network that we deployed as described in Section 2,
for which we have the network topology as well as the overall
hardware cost.

8.2.1 Medium Scenario. Figure 9 shows the solutions of FCNF
and MCF-RR for the Medium scenario that only consists of 18
customer sites and we applied the cluster-based vertex removal
with 99.95%. Both algorithms produce very similar hardware cost,
but MCF-RR finds a solution in under 1.3% of the FCNF’s optimal
solving time (we stopped the FCNF solver after 12 hours). However,
FCNF does produce a feasible solution with 5% of the MCF-RR
solution after around 20 minutes.

8.2.2 Large Scenario. Using the subscriber data from our real
deployment, we extracted the location and bandwidth requirements
of the customers. Due to the large map size and the large number of
customers, we applied our cluster-based vertex removal heuristic
with 99.7% and also a spatial clustering of customer locations to
replace groups of customers (within 500 m clusters) with a single
site. The bandwidth demand at each of these sites was assigned
the aggregate demand of their constituent customer sites. After
clustering, we obtained 509 customer sites and we added one source
site to the scenario.

Figure 10 shows the solutions produced by FCNF and MCF-RR
after 12 hours and 1.8 hours, respectively. The total hardware cost of
the network produced by FCNF is $46,430 and the network produced
by MCF-RR is $49,174. Each of these costs are nearly 3x smaller
than the hardware cost of $140,452 that we calculated from the
dataset of the real deployment. As with the Medium scenario, FCNF
produces a feasible solution within 5% of the MCF-RR solution
after 3.5 hours. However, our results here come with a few caveats.
First, the total hardware cost does not include hardware that would
be required to connect the individual customer locations within
each of the clustered customer locations. Second, the real network
has multiple source locations where we considered only a single
source. Third, the real network contains overprovisioned network
links that increase the overall cost. Despite these caveats, it is clear
that Zyxt using MCF-RR is able to produce comparably low-cost
network designs in only a couple of hours.

(a) Real deployment ($140,452)

(b) MCF-RR (1.8 h, $49,174)

(c) FCNF (12 h, $46,430)

Figure 10: Large real-world scenario solutions

9 CONCLUSIONS
Much of the focus on rural Internet access has been on establishing
cheap connectivity. As commodity hardware costs continue to fall,
planning and designing frontier networks is the next major chal-
lenge toward universal access. The planning problem is incredibly
difficult for would-be operators due to the combination of high
problem complexity and the lack of automated tools. In this paper,
we described the difficulties that operators face and presented our
approach, Zyxt, to the problem of WISP network planning. We
show through a synthetic and real-world scenarios that not only
is Zyxt able to solve large scale network planning problems more
quickly and easily than manual planning, but that our MCF-RR
algorithm also scales better and produces good solutions faster
than an off-the-shelf solver. Zyxt is an open source project [38].
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